DIY: Gaussian and Gauss-Jordan Elimination

To review these matrix methods for solving systems of linear equations, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering all the basic concepts covered in the videos, with answers and detailed solutions. Some additional resources are included for more practice at the end.

1. Part 1: Explanation of Gaussian elimination

2. Part 2: Gaussian elimination using matrices

Note of Explanation: The difference between Gaussian elimination using matrices and the Gauss-Jordan elimination method is in where the matrix manipulation stops. (In some videos, this difference is not made clear, or the wrong name is attached to the method being used.) So, to clarify...

Gaussian elimination (used in the video above) or "Gaussian reduction", stops when the augmented coefficient matrix is in "upper-triangular" or "row-echelon" form, such as the matrix shown here: $\left[\begin{array}{lll|l}1 & 2 & 3 & 4 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 1 & 7\end{array}\right]$. From here, the final solution is found using back-substitution.
Gauss-Jordan elimination (used in the videos below) stops when the augmented coefficient matrix is in "diagonal" or "reduced row echelon" form, such as this matrix; $\left[\begin{array}{lll|l}1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 7\end{array}\right]$. From here, the final solution can be immediately seen without back-substitution.
3. Solving a 2×2 System using Gauss-Jordan elimination
4. Solving a 3×3 system using Gauss-Jordan elimination
5. Solving a 3×3 system using Gauss-Jordan-- another presentation *
6. Dependent and Inconsistent systems of equations

[^0]
Practice Problems:

1. a. Solve using Gaussian elimination with matrices:

$$
\begin{aligned}
& x+2 y=1 \\
& 2 x-y=7
\end{aligned}
$$

b. Solve the system in 1.a. using Gauss-Jordan elimination.
2. Solve using Gauss-Jordan elimination: $\quad 3 x+4 y=4$

$$
6 x-2 y=3
$$

3. The following matrices represent systems of 3 equations with 3 variables. Gauss-Jordan elimination was used to arrive at the given matrices. Express the solution indicated by each matrix in the form (x, y, z) or state that no solution exists.
a. $\left[\begin{array}{ccc|c}1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$
b. $\left[\begin{array}{lll|l}1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
c. $\left[\begin{array}{ccc|c}1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$
d. $\left[\begin{array}{lll|l}1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
e. $\left[\begin{array}{lll|l}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]$
f. $\left[\begin{array}{lll|l}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$
4. Solve the following using Gauss-Jordan elimination:

$$
\begin{aligned}
& -x+y=-1 \\
& y-z=6 \\
& x+z=-1
\end{aligned}
$$

5. Solve the following using Gauss-Jordan elimination:

$$
\begin{aligned}
& x+2 y-z=9 \\
& 2 x-y+3 z=-2 \\
& 3 x-3 y-4 z=1
\end{aligned}
$$

7. Solve: $x-8 y+z=4$

$$
3 x-y+2 z=-1
$$

8. Solve: $\quad 3 x+y+3 z=1$

$$
\begin{aligned}
& x+2 y-z=2 \\
& 2 x-y+4 z=4
\end{aligned}
$$

9. Solve: $\quad x-y+2 z+w=4$
$y+z-3=0$
$z=w+2$
10. The perimeter of a triangle is 33 cm . The longest side is 3 cm longer than the medium side. The medium side is twice as long as the shortest side.
a. If $x=$ length of the shortest side, $y=$ length of the medium side, and $z=$ length of the longest side of the triangle, set up a system of equations that can be used to solve the problem. (Hint: How many equations will be needed to solve the problem?)
b. Find the lengths of the sides.
11. To get the necessary funds for a planned expansion, a small company took out three loans totaling $\$ 25,000$ for one year. The company was able to borrow some of the money at 8% interest. It borrowed $\$ 2000$ more than one-half the amount of the 8% loan at 10%. The rest was borrowed at 9%. The total annual interest was $\$ 2220$. Set up a system of equations that could be used to find the amounts borrowed at each rate. (Remember, interest = (amount borrowed)(annual interest rate as a decimal) For example, \$100 borrowed at 3% interest for 1 year costs $(\$ 100)(.03)=\$ 3.00$ in interest.)
12. Assume problem 10 has a unique solution. If the condition is dropped that the amount borrowed at 10% is $\$ 2000$ more than $1 / 2$ the amount borrowed at 8%, how would this affect the system? Would you expect to find a unique solution, many solutions, or no solution? Explain.
13. Suppose the company in problem 10 can borrow only $\$ 6000$ at 9%. How would this affect the system of equations? Would you expect to find a unique solution, many solutions, or no solution? Explain.
14. In a physics lab experiment, students are told that a particle moving in a straight line (but not a constant speed!) moves according to the formula $s=a t^{2}+b t+c$ where s is the particle's distance in feet from a fixed point at time t seconds after launch. Students gather the following data:

\boldsymbol{t}	\mathbf{s}
0	5
1	23
2	37

Find the values for a, b, and c in the above equation for s. Then use your answer to find how far the particle is from the fixed point 8 seconds after launch.

Answers:

1. $(3,-1)$ or $\mathrm{x}=3, \mathrm{y}=-1$
2. $(x, y)=\left(\frac{2}{3}, \frac{1}{2}\right)$

3a. $(4,-1,0)$

3b. no solution
3c. $(3-2 t, t+5, t)$
3d. $(4-2 s-3 t, s, t)$
3e. no solution

3f. $(2,3, t)$
4. $(3,2,-4)$
5. $(2,3,-1)$
6. $\left.\left(\frac{-12-15 t}{23}, \frac{-13+t}{23}, t\right)\right)$
7. no solution
8. $(1-4 t, 1-t, t+2, t)$

$$
\text { 9. a. } \quad \begin{aligned}
& x+y+z=33 \\
& \\
& z=y+3 \\
& y=2 x
\end{aligned}
$$

9b. $x=6 \mathrm{~cm}$
$y=12 \mathrm{~cm}$ $\mathrm{z}=15 \mathrm{~cm}$
10. $x+y+z=25,000$

$$
.08 x+.10 y+.09 z=2220
$$

$$
y=\frac{1}{2} x+2000
$$

$$
\text { or } \quad \begin{aligned}
& x+y+z=25,000 \\
& 8 x+10 y+9 z=222,000 \\
& -x+2 y=4000
\end{aligned}
$$

11. would become 2 equations with 3 variables which is a dependent system. Many solutions.
12. would be 4 equations with 3 variables (or 3 equations with 2 variables). No solution.
13. a . $\mathrm{a}=-2, \mathrm{~b}=20, \mathrm{c}=5$, so $s=-2 t^{2}+20 t+5$
b. when $t=8, s=37$ feet

Detailed Solutions (start on next page)

1. a. Gaussian elimination on $x+2 y=1$

$$
2 x-y=7
$$

The initial augmented coefficient matrix is $\left[\begin{array}{cc|c}1 & 2 & 1 \\ 2 & -1 & 7\end{array}\right]=A$ Remember, the desired final matrix is $\left[\begin{array}{ll|l}1 & 0 & \text { number) } \\ 0 & 1 & \text { numbers }\end{array}\right]$

The allowable row operations are:

1. Rows may be interchanged. (This would be the same as writing the riginal equations is a different order.)

Shote: to refer to
specific entries
in a matrix, 3 is
convent lent to give
them names, using subsenpls to descries the 10cation. The first इulbercitis the ron, the seconds the column where the entry is located. In our initial matrix A, ${ }^{n} 7$ " is a_{23}-tine entry th ria 2, colum a 3.
2. A row can be multiplied by a constant. (This world be the same as multiplying both sixes of an equation by a constant.)
3. A row can be replaced by that row (or a multiple of that sew) + or - a multiple of any other ran. (This is the same as, in non-matrix eliminations solutions, adding a multiple fore equation to a multiple of another equation.)

Steps:

$$
\left[\begin{array}{cc|c}
1 & 2 & 1 \\
2 & -1 & 7
\end{array}\right]
$$

Since. there is already a "I' in the top left position, nothing needs to be dare to the first row now.

To get a " 0 " in the a_{21} position (see note"), add (-2) " row 1 to row 2 and stove the result in row 2 (replacing, the original row 2).

$$
\begin{aligned}
& \xrightarrow{R_{2} /(-5) \rightarrow R_{2}}\left[\begin{array}{cc|c}
1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

This is the final matrix for the Gaussian eliminations method.

Note the "triangular" shape of the non-zero entries, (not meloding the augmented last column).

This matrix corresponds to the equations. $1 x+2 y=1$

$$
0 x+1 y=-1
$$

$$
\begin{aligned}
& \text { or } \begin{array}{r}
x+2 y=1 \\
y=-1
\end{array} \begin{array}{r}
\begin{array}{r}
\text { Eack-sobstituting into the } \\
\text { first equation, } \\
\\
\\
\\
\\
\\
x
\end{array}+2 y=1 \\
x-2(-1)=1
\end{array} \\
& \text { The solution is } \Rightarrow(x, y)=(3,-1) \text { (as an ordered pain). }
\end{aligned}
$$

Note: al though the video on 2×2 systems states that the variables should be in alphabetical order, that is not necessary. The variables should, however, be m some known order, and be m the same order in each equation.
b. To complete this problem using Gauss-Jordan elimination, start with the final matrix from the Gaussian elimination process: $\quad\left[\begin{array}{ll|l}1 & 2 & 1\end{array}\right]$ continue by making $a_{12}=0$ by $\left[\begin{array}{cc|c}1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right]$ adding $(-2)($ row 2$)$ to row 1 .
$\xrightarrow[2]{R_{1}-2 a_{2} \rightarrow R_{1}}\left[\begin{array}{cc|c}1 & 0 & 3 \\ 0 & 1 & -1\end{array}\right]$
$-2 R_{2}: \begin{array}{ccc}R_{1}: & 1 & 2 \\ 0 & -2 & 2 \\ 1 & 0 & 3\end{array}$ \qquad Now the solution can be read immediately, since the equations associated with this matrix are

$$
\begin{gathered}
\left.\begin{array}{l}
1 x+0 y=3 \\
0 x+1 y=-1
\end{array}\right\} \text { or } \rightarrow \\
(x, y)=\begin{array}{l}
x=3 \\
y=-1
\end{array} \\
(3,-1)
\end{gathered}
$$

2. $\begin{aligned} & 3 x+4 y=4 \\ & 6 x-2 y=3\end{aligned} \rightarrow\left[\begin{array}{ll|l}3 & 4 & 4 \\ 6 & -2 & 3\end{array}\right]$

To got $a_{11}=1$, divide row 1 by $3: \xrightarrow{R_{1} / 3 \rightarrow R_{1}}\left[\begin{array}{cc|c}1 & 4 / 3 & 4 / 3 \\ 6 & -2 & 3\end{array}\right]$

Remember the "addresses" of the matrix entries.

$$
\left[\begin{array}{ll|l}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

Now we need " O " in a_{21} position:

Notes: Most errors is solving are dire to arithmetre mistakes. Help avoid these by.

1. enter the rows Not being clanged first
a. do the arimmetre off to the siche mstead of in your head to apt biter accuracy.
These are espeadedy impatient as the calculations get more involved (like with fractions) ana the systems aft larger.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1 & 4 / 3 & 4 / 3 \\
(6) & -2 & 3
\end{array}\right] \xrightarrow{R_{2}-6 R_{1} \rightarrow R_{2}}\left[\begin{array}{cc|c}
1 & 4 / 3 & 4 / 3 \\
0 & -10 & -5
\end{array}\right]}
\end{aligned}
$$

Need "I" in a_{22} "

$$
\left[\begin{array}{cc|c}
1 & 4 / 3 & 4 / 3 \\
0 & (-10) & -5
\end{array}\right] \xrightarrow{-\frac{1}{10} R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|c}
1 & 4 / 3 & 4 / 3 \\
0 & 1 & -\frac{5}{10}=\frac{1}{2}
\end{array}\right]
$$

check:

$$
\begin{aligned}
& 3(2 / 3)+4\left(\frac{1}{2}\right)=2+2=4 \\
& 6\left(\frac{2}{3}\right)-2\left(\frac{1}{2}\right)=4-1=3
\end{aligned}
$$

Solute: $\quad(x, y)=(2 / 3,1 / 2)$
or $x=\frac{2}{3}, y=\frac{1}{2}$
3. a. $\left[\begin{array}{lll|c}1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$ solution: $(4,-1,0) \quad \begin{array}{ll}x=4 & \text { (consistent, } \\ y=-1 & \text { independent } \\ z=0 & \text { equations) }\end{array}$

$$
\text { b. }\left[\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{ll}
\text { No solution } \quad \begin{array}{l}
\text { because row } 3 \text { says } 0=1 \\
\text { which is a contradiction. }
\end{array} \\
\text { (inconsistent equations) }
\end{array}
$$

c. $\left[\begin{array}{ccc|c}1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]$
\leftarrow Row 3 can be ignored. It only tells us $0=0$.

$$
\text { Row 2: } y-z=5 \text { if we let } z=t \text { where } t \text { can be any }
$$ (t is called a "parameter")

$$
\begin{array}{r}
\text { then } \begin{array}{r}
y=z+5 \\
y=t+5 \\
\text { Row 1: } x+2 z=3 \rightarrow x=3-2 z \\
x=3-2 t
\end{array}
\end{array}
$$

$$
\text { Solution: (3-2t,t+5,t) (infinite number - af } \begin{aligned}
& \text { solutions, but del of }
\end{aligned}
$$ solutions, bot ace of this form.)

one possible solution: if $t=0 \quad x=3, y=5, z=0 \quad(3,5,0)$

$$
\text { if } t=-1 \quad x=5, \quad y=4 \quad z=-1 \quad(5,4,-1)
$$

dependent system: (one unique solonian for each vale $d t$.)
d. $\left[\begin{array}{lll|l}1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow x+2 y+3 z=4 \quad \begin{gathered}\text { In this case, we have a free } \\ \text { choice of values for two of } \\ \text { the variables before the third } \\ \text { variable is Oniwely ictermined. } \\ \text { so we need two parameters. }\end{gathered}$

$$
\begin{aligned}
& \text { let } z=t \text { and } y=s \text { then } x=4-2 s-3 t \\
& \text { solution: (4-2s-3t,s,t) where sit can } \\
& \text { be any red numbers. }
\end{aligned}
$$

$$
\text { for example, if } s=3 \text { and } t=-2 \text {, }
$$

$$
x=4-2(3)-3(-2)=4
$$

$$
y=s=3
$$

$$
z=t=-2 \rightarrow \text { soln }(4,3,-2)
$$

dependent system: (ane uni are solution for each value of s and t)

MATH ASSISTANCE AREA

$$
\left[\begin{array}{ccc|c}
-1 & 1 & 0 & -1 \\
0 & 1 & -1 & 6 \\
1 & 0 & 1 & -1
\end{array}\right] \stackrel{R_{3} \rightarrow R_{1}}{R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & -1 \\
0 & 1 & -1 & 6 \\
-1 & 1 & 0 & -1
\end{array}\right] \xrightarrow{R_{3}+R_{1} \rightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & 0 & 1 & -1 \\
0 & 1 & -1 & 6 \\
0 & 1 & 1 & -2
\end{array}\right]
$$

$$
\xrightarrow{R_{1}-R_{3} \rightarrow R_{1}}\left[\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -4
\end{array}\right]
$$

* usually, we gd a " 0 " entry by adding a mu siple of the roue that contains the "in on
the diagonal in that column.
This prevents "undoing" work dore previously.

MATH ASSISTANCE AREA
 LEARNING COMMONS: ONE-STOP ACADEMIC SUPPORT CENTER
 Stop by or call (630) 942-3339

$$
\begin{aligned}
& \text { 3.e. }\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { No solution! (inconsistent system) } \\
& \text { It stats out } 100 \mathrm{king} \text { like } x=2 \\
& \text { and } y=3 \text { but in means. } \\
& x=2, y=3 \text { woven } 0=1 \\
& \text { (which is never!). } \\
& f .\left[\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \text { Now, this is a dependent system } \\
& \text { of equations, but the equations say: } \\
& x=2 \\
& y=3 \\
& z \text { (no information!) } \\
& \text { Solution: }(2,3, t) \text { where } t=\begin{array}{c}
\text { any read } \\
n u m b e r
\end{array}
\end{aligned}
$$

$$
\text { 5. } \quad x+2 y-z=9
$$

$$
2 x-y+3 z=-2
$$

$$
3 x-3 y-4 z=1
$$

$\checkmark^{\text {Douma } 1}$ is done.
$\left[\begin{array}{ccc|c}1 & 2 & -1 & 9 \\ 2 & -1 & 3 & -2 \\ 3 & -3 & -4 & 1\end{array}\right] \underset{\uparrow}{\substack{R_{3}-3 R_{1} \rightarrow R_{3}}} \underset{\substack{R_{2}-2 R_{1} \rightarrow R_{2}}}{\left[\begin{array}{ccc|c}1 & 2 & -1 & 9 \\ 0 & -5 & 5 & -20 \\ 0 & -9 & -1 & -26\end{array}\right] \xrightarrow{\frac{R_{2}}{-5} \rightarrow R_{2}}\left[\begin{array}{ccc|c}1 & 2 & -1 & 9 \\ 0 & 1 & -1 & 4 \\ 0 & -9 & -1 & -26\end{array}\right]}$

$R_{2}: 2-1$
$-2 R_{1}: \frac{-2}{}-4$
0

can do 2 steps
at once if s
$\left.\begin{array}{rlrr}R_{1}: & 1 & 2 & -1 \\ -2 R_{2} & 9 & \frac{0}{1} & -2 \\ \hline & 2 & 1 & -8 \\ \hline\end{array} \rightarrow R_{1}\right]$

$\xrightarrow[\substack{R_{3}+9 R_{2} \rightarrow R_{3}}]{R_{1}-2 R_{2} \rightarrow R_{1}}\left[\begin{array}{ccc|c}1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & -10 & 10\end{array}\right] \xrightarrow{\stackrel{R_{3}}{-10} \rightarrow R_{3}}\left[\begin{array}{ccc|c}1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 1 & -1\end{array}\right]$

$$
\begin{aligned}
& \text { columns } \\
& 1 \neq 2 \text { are } \\
& \text { bone }
\end{aligned}
$$

$$
\xrightarrow[R_{2}+R_{3} \rightarrow R_{2}]{R_{1}-R_{3} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

or $(x, y, z)=(2,3,-1)$
(consistent, modendent system)

$$
\begin{aligned}
& \text { 6. } x-8 y+z=4 \text { note: Since share are more variables than } \\
& 3 x-y+2 z=-1 \\
& {\left[\begin{array}{ccc|c}
1 & -8 & 1 & 4 \\
3 & -1 & 2 & -1
\end{array}\right] \xrightarrow{R_{1}-3 x_{1} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & -8 & 1 & 4 \\
0 & 23 & -1 & -13
\end{array}\right] \xrightarrow{\frac{k_{2}}{23} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & -8 & 1 & 4 \\
0 & 1 & -\frac{1}{23} & \frac{-13}{23}
\end{array}\right]} \\
& -3 e_{1}, \frac{R_{2}}{} \cdot \frac{3}{}-3 \begin{array}{ccc}
24 & -1 \\
0 & 23 & -1
\end{array}-13 \\
& \text { Let } z=\Sigma \text { Row 2: } \frac{y-\frac{1}{23} z=\frac{-13}{23}}{y=-\frac{13}{23}+\frac{1}{23} t} \\
& \text { Row I: } x-8\left(-\frac{13}{23}+\frac{1}{23} t\right)+t=4 \\
& x+\frac{104}{23}-\frac{8}{23} t+t=4 \\
& \begin{array}{l}
\frac{23}{23} \\
x+\frac{15}{23} t=4\left(\frac{73}{23}\right)-\frac{107}{23} \Rightarrow x=-\frac{12}{23}-\frac{15}{23} t
\end{array}
\end{aligned}
$$

checking answer to $\$ 6$: $\quad x-8 y+z=4$

$$
\begin{aligned}
& \frac{-12-15 t}{23}-8\left(\frac{-13+t}{23}\right)+t \stackrel{?}{=} \\
& -\frac{12}{23}-\frac{15}{23} t+\frac{104}{23}-\frac{9}{23} t+\frac{23}{23} t= \\
& -\frac{12}{13}+\frac{104}{23}-\frac{15}{23} t-\frac{8}{23} t+\frac{23}{23} t= \\
& \frac{92}{23}-\frac{23 t}{23}+\frac{23}{23} t=\frac{92}{23}=4 \text { check! } \\
3 x-y+2 z= & 3\left(-\frac{12}{23}-\frac{15}{23} t\right)-\left(\frac{-13 t t}{23}\right)+2(t) \stackrel{?}{=}-1 \\
= & -\frac{36}{23}-\frac{45}{23} t+\frac{13}{23}-\frac{1}{23} t+\frac{4 k}{23} t \\
= & -\frac{36}{23}+\frac{13}{23}-\frac{45}{23}+-\frac{1}{23} t+\frac{41}{23} t \\
= & -\frac{23}{23}-\frac{44}{23} t+\frac{46}{23} t=-\frac{23}{23}=-1
\end{aligned}
$$

$$
\text { 7. } \quad 3 x+y+3 z=1
$$

$$
\begin{array}{r}
x+y+2 z=1 \\
2 x-y+4 z=4
\end{array} \rightarrow\left[\left.\begin{array}{ccc|c}
3 & 1 & 3 & 1 \\
1 & 2 & -1 & 2 \\
2 & -1 & 4 & 4
\end{array} \right\rvert\, \begin{array}{l}
R_{1} \rightarrow R_{2} \\
2
\end{array} \rightarrow R_{1},\left[\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
3 & 1 & 3 & 1 \\
2 & -1 & 4 & 4
\end{array}\right]\right.
$$

$$
\xrightarrow{R_{3}-2 R_{1} \rightarrow R_{3}}\left[\begin{array}{cccc}
1 & 2 & -1 & 2 \\
0 & -5 & 6 & -5 \\
0 & -5 & 6 & 0
\end{array}\right] \xrightarrow{R_{3}-R_{2}}\left[\begin{array}{ccc|c}
1 & 2 & -1 & 2 \\
0 & -5 & 6 & -5 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

$$
\begin{array}{rrrrrrrrr}
R_{2}: & 3 & 1 & 3 & 1 \\
-3 R_{1}: & \frac{-3}{-4} & 3 & -6 \\
0 & -5 & 6 & -5 & & R_{3}: 2 R_{1}: & 2 & -1 & 4
\end{array} 4
$$

inconsistent
$0=S$ is a contradiction.
no solution

$$
\text { 8. } \begin{gathered}
x-y+2 z+\omega=4 \\
y+z-3=0 \\
z=10+2
\end{gathered}
$$

This problem might be faster to solve just using substitution.

$$
z=\omega+2
$$

$$
y=3-2=3-(w+2)=1-w
$$

$$
\text { than } x-(1-\omega)+2(\omega+2)+w=4
$$

$$
x-1+w+2 w+4+w=4
$$

$$
x+3+4 \omega=4
$$

$$
x=-4 \omega+1
$$

$$
\text { Soln: } \quad(x, y, z, \omega)=(-4 \omega+1,1-\omega, \omega+2, \omega)
$$

$$
\text { but using Gauss-Jordan elimination... Row } 2: y+z=3
$$

$$
\left[\begin{array}{cccc|c}
1 & -1 & 2 & 1 & 4 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & -1 & 2
\end{array}\right]
$$

column 1 is already in final form.
To finalize column 2 , eliminate the (-1) in a_{12} position.

$$
\xrightarrow{R_{1}+R_{2} \rightarrow R_{1}}\left[\begin{array}{cccc|c}
1 & 0 & 3 & 1 & 7 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & -1 & 2
\end{array}\right]
$$

To finalize column 3 , add multiples of row 3 to rows 1 and 2

$$
\left.\left.\left.\begin{array}{rl}
R_{1}-3 R_{3} \rightarrow R_{1}
\end{array} \xrightarrow{1}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 4 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right) 2\right] \xrightarrow{R_{2}-R_{3} \rightarrow R_{2}}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 4 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & 2
\end{array}\right] \Rightarrow \begin{array}{l}
x+4 \omega=1 \\
y+\omega=1 \\
z-\omega=2 \\
\text { if we wet } \omega=t
\end{array}\right] \text { then } \begin{array}{l}
x=1-4 t \\
y=1-t \\
z=t+2
\end{array}\right]
$$

$$
\begin{aligned}
\text { Solution: } & (x, y, z, \omega)=(1-4 t, 1-t, t+2, t) \\
& \text { (same as regular substitution method) }
\end{aligned}
$$

$$
\begin{aligned}
& -9- \\
& \text { 9. a. } \\
& \text { perimer }=33 \Rightarrow x+y+z=33 \\
& \begin{array}{r}
\text { longyst siele is } 3 \text { tangti } \Rightarrow z=y+3 \\
\text { than mediom side }
\end{array} \Rightarrow z=y \\
& \begin{array}{r}
\text { mectiom sibe is thier } \\
\text { shertest side }
\end{array} \Rightarrow y=2 x \\
& \text { System: } \left.\begin{array}{c}
x+y+z=33 \\
z=y+3 \\
y=2 x
\end{array}\right\} \begin{array}{c}
3 \text { variables - need } \\
3 \text { eqns. to solve }
\end{array} \\
& \text { b. rearranging: } \quad x+y+z=33 \\
& -y+z=3 \\
& -2 x+y=0 \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 33 \\
0 & -1 & 1 & 3 \\
-2 & 1 & 0 & 0
\end{array}\right] \xrightarrow{r_{3}+2 e_{1} \rightarrow l_{3}}\left[\begin{array}{rrr|r}
1 & 1 & 1 & 33 \\
0 & -1 & 1 & 3 \\
0 & 3 & 2 & 66
\end{array}\right] \xrightarrow{(-1) e_{2} \rightarrow r_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 33 \\
0 & 1 & -1 & -3 \\
0 & 3 & 2 & 66
\end{array}\right]} \\
& \xrightarrow[R_{3}-3 R_{2} \rightarrow R_{3}]{R_{1} R_{2} \rightarrow R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & 2 & 36 \\
0 & 1 & -1 & -3 \\
0 & 0 & 5 & 75
\end{array}\right] \stackrel{R_{3}}{5} \rightarrow R_{3}\left[\begin{array}{ccc|c}
1 & 0 & 2 & 36 \\
0 & 1 & -1 & -3 \\
0 & 0 & 1 & 15
\end{array}\right] \xrightarrow{R_{1}-2 R_{3} \rightarrow R_{1} \rightarrow R_{2}} \\
& {\left[\begin{array}{ccc|c}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 12 \\
0 & 0 & 1 & 15
\end{array}\right] \rightarrow \begin{array}{l}
x=6 \mathrm{~cm} \\
y=12 \mathrm{~cm} \\
z=15 \mathrm{~cm}
\end{array}}
\end{aligned}
$$

10. let $x=a m t$, borrrived at 8%
$y=$ ant burrowed at 10%
$z=a m t$. borrowed at 9%
total borrcured $=25,000 \rightarrow x+y+z=25,000$ total interest $=52220 \rightarrow .08 x+.10 y+.09 z=2220$

$$
\text { or } 8 x+10 y+9 z=223,000
$$

borrowed 2000 mare in an

$$
\begin{aligned}
& \text { orraued so } 2000 \text { mare than } \\
& \frac{1}{2} \text { amp } 28 \% \text { at } 10 \% 0 \frac{1}{2} x+2000
\end{aligned}
$$

$$
2 y=x+4000
$$

$$
-x+2 y=4000
$$

eqns:

$$
\left[\begin{array}{l}
x+y+z=25,000 \\
08 x+.10 y+.09 z=2220 \\
y=\frac{1}{2} x+2000
\end{array}\right\} \text { or } \begin{aligned}
& x+y+z=25,000 \\
& 8 x+10 y+9 z=222,000 \\
& -x+2 y=4,000
\end{aligned}
$$

11. If equations in 10 have a unique solution and if the condition that $y=\frac{1}{2} x+2000$ is dropped, there would any be 2 equations with 3 variables. \rightarrow dependent system. There would be an infinite number of solutions.
(with the real-world restriction that x, y, and z would all have to be positive. That waste limit the value it the parameter,)
12. If the restriction that $z=6,000$, the system becares.

$$
\begin{gathered}
x+y+6000=25,000 \rightarrow x+y=19,000 \\
8 x+10 y+9(6000)=222,000 \rightarrow 8 x+10 y=168,000
\end{gathered}
$$

$$
-x+2 y=4,000
$$

Now we would expect no solution (in consistent system) since there are more equations than variables.

$$
\begin{aligned}
& \text { 13. } a, s=a t^{2}+b t+c \\
& \begin{aligned}
\text { if } t=0, s=5 \rightarrow \quad \rightarrow \quad a(0)+b(0)+c & =5 \\
c & =5 \quad \leftarrow \underset{\text { make thess }}{ }=5
\end{aligned} \\
& \text { if } t=1, s=23 \rightarrow \quad s=a(1)^{2}+b(1)+c=23 \\
& a+b+c=23 \quad \leftarrow \text { en. } 1 \\
& \text { if } t=2, s=37 \rightarrow s=a(2)^{2}+b(2)+c=37 \\
& 4 a+2 b+c=37 \leftarrow \text { en. } 2 \\
& \text { in matrix form: }\left[\begin{array}{lll|l}
1 & 1 & 1 & 23 \\
4 & 2 & 1 & 37 \\
0 & 0 & 1 & 5
\end{array}\right] \\
& \xrightarrow[\substack{1 \\
1 \\
-4 \\
-42}]{R_{2}-4 R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 23 \\
0 & -2 & -3 & -55 \\
0 & 0 & 1 & 5
\end{array}\right] \xrightarrow{\frac{R_{2}}{-2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 23 \\
0 & 1 & 3 / 2 & 55 / 2 \\
0 & 0 & 1 & 5
\end{array}\right] \\
& \begin{array}{r:cccc}
R_{2}: 4 & 2 & 1 & 37 \\
-40: & \frac{-4}{}-4 & -4 & -42 \\
\hline 0 & -2 & -3 & -55
\end{array} \\
& \xrightarrow{R_{1}-R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & -1 / 2 & -9 / 2 \\
0 & 1 & 3 / 2 & 55 / 2 \\
0 & 0 & 1 & 5
\end{array}\right] \xrightarrow[R_{1}+\frac{1}{2} R_{3} \rightarrow R_{1}]{R_{2}-\frac{3}{2} R_{3} \rightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 20 \\
0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solution: } a=-2 \quad b=20 \quad c=5 \\
& \text { equation of motion: } S=-2 t^{2}+20 t+5
\end{aligned}
$$

b. 8 seconds after launch, $s(8)=-2(8)^{2}+20(8)+5$

$$
=-128+160+5=37 \mathrm{fect}
$$

Additional Practice:

1. Go To http://kutasoftware.com/freeipc.html
2. Under "Matrices and Systems":

- Multivariable linear systems and row operations

3. Go to http://www.kutasoftware.com/freeia2.html
4. Under "Systems of Equations and Inequalities":

- These systems of equations were intended to be solved by other methods but answers are given and any can be solved using GaussJordan elimination.

5. You can print out the worksheets and work on them. The solutions are provided at the end of the worksheets
6. For help, please contact the Math Assistance Area.

[^0]: *Note: the presenter in this video states that is not correct to divide a row by a number but rather you must multiply by its reciprocal. This is not necessary. The two operations, dividing by a (non-zero) constant and multiplying by its reciprocal are equivalent.

