DIY: Systems of Linear Equations

To review solving systems of linear equations using non-matrix methods, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering all the basic concepts covered in the videos, with answers and detailed solutions. Some additional resources are included for more practice at the end.

1. Systems of Linear Equations

a. Solving a system of equations by graphing
b. Classifying a system of equations as Consistent, Inconsistent, Dependent \& Independent Linear Systems
c. Solving a system of equations by substitution Part 1
d. Solving a system of equations by substitution Part 2
e. Solving a system of equations by elimination Part 1
f. Solving a system of equations by elimination Part 2
g. Solving 3 equations in 3 variables using elimination
h. Some applications of systems of linear equations

Practice problems: The following problems use the techniques demonstrated in the above videos. The answers are given after the problems. Then detailed solutions, if you need them, are provided after the answer section. For further assistance and help please contact Math Assistance Area.

1. Solve the following systems of equations by graphing:
a. $y=2 x+6$
$y=-3 x-4$
b. $3 x+2 y=4$
$2 x+3 y=6$
C. $6 x+3 y=21$
$2 x+y=2$
d. $4 x+5 y=15$
$8 x+10 y=30$
e. $x=2$
$y=\frac{1}{2}$
f. $y=0$
$y=x$
2. Solve the following system of equations by substitution:
a. $\begin{aligned} x & =y+8 \\ x & +y=10\end{aligned}$
b. $\begin{aligned} 12 x+3 y & =21 \\ 3 x-12 y & =9\end{aligned}$
C. $\begin{aligned} x-2 y=6 \\ 2 x-4 y=12\end{aligned}$
d. $21 y-14 x=54$
$-2 x+3 y=1$
3. Solve the following system of equations by elimination
a. $5 x-4 y=21$
$10 x+y=7$
b. $2 y-7 x=6$
C. $y=11 x-2$
$-22 x=-2 y-4$
d. $x+y=0$
e. $-24 x+9 y=3$
$10 y+8 x=12$
f. $x=y$
$y=x+4$
4. Classify the following lines as consistent, inconsistent, dependent and independent:
a. $2 x+4 y=10$
$x+2 y=5$
d.

b. $21 y-4 x=14$
$12 x-3 y=22$
C. $56 x-2 y=12$
$28 x-y=12$
e.

f.

g.

5. Classify the following as parallel, perpendicular or neither:
a. $x=y+11$
$x-y=2$
b. $2 x+3 y=24$
$8 x-12 y=24$
C. $x-2 y=6$
$24 x+12 y=60$
d. $12 y-14 x=4$
$x+10 y=121$
6. Application problems:
a. In 2016, city A had a population of 52,123 more than city B. Find the population of each city is the total population of the two cities is $150,895,023$.
b. The length of the top of a rectangular desk is 2.5 times its width. Find the dimensions of the desk if the perimeter is 35 ft .
c. How many liters of a 10% alcohol solution and a 1% solution should be added to obtain 60ℓ of a 4% solution?
d. Maria bought two hotdogs and a drink in a ball park for $\$ 21.90$ and Lizzy bought 3 hotdogs and 2 drinks for $\$ 35.35$ Find the cost of a hotdog and a drink
e. Two planes leave an airport in opposite directions from each other at the same time. Plane P is 100 mph slower than Plane Q. Find the speed of each plane if they are 1000miles apart after 2 hours.
7. Solve the following system of equations using elimination:

$$
\begin{gathered}
x+2 y-z=9 \\
2 x-y+3 z=-2 \\
3 x-3 y-4 z=1
\end{gathered}
$$

Answers:

1.

a) $(-2,2)$
b) $(0,2)$
c) No solution,
Parallel lines
d) Infinitely many solutions
e) $\left(1, \frac{1}{2}\right)$
f) $(0,0)$
2.
a) $(9,1)$
b) $\left(\frac{31}{17}, \frac{-5}{17}\right)$
c) Infinitely many solutions
d) No solution, Parallel lines
3.
a) $\left(\frac{1}{5},-5\right)$
b) $(-2,-4)$
c) Infinitely many solutions
d) $(-2,2)$
e) $\left(\frac{1}{4}, 1\right)$
f) No solution, Parallel lines
4.
a) Consistent, dependent
b) Consistent, Independent
c) Inconsistent
d) Consistent , independent
e) Inconsistent
f) Consistent, dependent
g) Consistent , independent
5.
a) Parallel
b) Neither
c) Perpendicular
d) Neither
6.
a) Population Of City $A=75,473,573$ b) Length $=12.5 \mathrm{ft}$.

Population Of City B=75,421,450
Width $=5 \mathrm{ft}$.
c) 20ℓ of 10% solution should be added to 40ℓ of 1% solution
d) Hot dog cost $\$ 8.45$ and Drink costs \$5
e) Speed of plan $\mathbf{P}=200 \mathrm{mph}$

Speed of plan $\mathbf{Q}=300 \mathrm{mph}$
7. $(x, y, z)=(2,3,-1)$

Detailed Solution for Solving Systems of Equations

1.a.

$$
\begin{aligned}
& \text { i.a. } y=2 x+6 \rightarrow \text { siope }=2, y \cdot n+.(0,6) \\
& y=-3 x-4 \rightarrow \text { sloge }=-3 \text {, y.int. }(0,-4) \\
& \text { It appears that the likes meterses at }(-2,2) \text {. } \\
& \text { chacking by srostitusing into equetions: } \\
& y=2 x+6 \rightarrow 2=2(-2)+6 \rightarrow 2=-4+6 \text { creck! } \\
& y=-3 x-4 \rightarrow 2=-3(-2)-4 \rightarrow 2=6-4 \text { aneck) }
\end{aligned}
$$

1.b. $3 x+2 y=4 ; \quad$ compare to

$$
\begin{aligned}
& \frac{2 y}{2}=-\frac{3 x}{2}+\frac{4}{2}: y=\frac{-3}{2}, \quad y \text { int }=(0,2) \\
& y=-\frac{3}{2} x+2 \\
& \begin{array}{l}
2 x+3 y=6 \\
-2 x \quad-2 x
\end{array} \\
& \begin{array}{l}
\frac{3 y}{3}=-\frac{2 x}{3}+\frac{6}{3} \\
y=-\frac{2}{3} x+2
\end{array} \\
& \text { Solution }(0,2)
\end{aligned}
$$

1.c.

1.d. $4 x+5 y=15$

1 compare to

1.e.) $x=2 \rightarrow$ parallel to y-axis $y=\frac{1}{2} \rightarrow$ parallel to x-axis Solution: $(2,1 / 2)$.

* Please note that the scale in the graph is $1 b o x=\frac{1}{2}$ units

1.f. $\quad y=0 \rightarrow y$-axis

$$
\begin{aligned}
& y=x \Rightarrow m=1, \\
& \text { Mint }(0,0) \\
& \text { solution: }(0,0)
\end{aligned}
$$

2.a.

$$
\begin{align*}
& x=y+8 \tag{1}\\
& x+y=10 \\
& \text { substituting for } x \\
& \text { into } 2 \\
& y+8+y=10 \\
& 2 y+8=10 \\
& -8 \\
& \frac{2 y}{2}=\frac{2}{2} \\
& y=1
\end{align*}
$$

substituting for x from (1)
substituting $y=1$ in (1) we get

$$
x=1+8=9
$$

Solution $(6,1)$
2.b. $12 x+3 y=21$

$$
3 x-12 y=9
$$

solving (2) for x

$$
\begin{gathered}
3 x-12 y=9 \\
+12 y+12 y \\
\frac{3 x}{3}=\frac{12 y}{3}+\frac{9}{3} \\
x=4 y+3
\end{gathered}
$$

Substituting x in (1) we get

$$
\begin{gathered}
12(4 y+3)+3 y=21 \\
48 y+36+3 y=21 \\
51 y+36=21 \\
-36-36 \\
\frac{51 y}{51}=-\frac{155}{55} 17 \\
y=-\frac{5}{17}
\end{gathered}
$$

2.c.

$$
\begin{aligned}
x-2 y & =6 \\
2 x-4 y & =12
\end{aligned}
$$

solving (1) for x we get

$$
\begin{aligned}
& x-2 y=6 \\
& +2 y+2 y \\
& x=2 y+6
\end{aligned}
$$

Substituting x in (2) we get

$$
\begin{gathered}
2(2 y+6)-4 y=12 \\
4 y+12-4 y=12 \\
12=12
\end{gathered}
$$

Always true
Thus there are infinitely many solutions

$$
\begin{aligned}
y & =-\frac{5}{17} \\
x & =4 y+3 \\
& =4\left(\frac{-5}{17}\right)+3 \\
& =-\frac{20}{17}+3 \\
& =\frac{-20+51}{17} \\
x & =\frac{31}{17}
\end{aligned}
$$

Hence solution if $\left(\frac{31}{17}, \frac{-5}{17}\right)$
check

$$
\frac{\text { check }}{1 \rightarrow 12\left(\frac{31}{17}\right)+3\left(-\frac{5}{77}\right)=21}
$$

$$
\frac{372-15}{17}=21
$$

$$
\frac{35721}{17}=21, \quad 21=21 \text { true }
$$

$$
\text { (2) } \rightarrow 3\left(\frac{31}{17}\right)-12\left(\frac{-5}{17}\right)=9
$$

$$
\begin{aligned}
& 93 \\
& \frac{93}{17}+\frac{60}{17}=9 \\
& 1539=9
\end{aligned}
$$

$$
\frac{1539}{17}=9 ; 9=9 \text { true }
$$

2.d. $21 y-14 x=54$

$$
\begin{equation*}
-2 x+3 y=1 \tag{1}
\end{equation*}
$$

solving (2) for x we get

$$
\begin{aligned}
&-2 x+3 y=1 \\
&-3 y \\
&-3 y \\
& \frac{-2 x}{-2}=\frac{1}{-2}-\frac{3 y}{-2} \\
& x=+\frac{3}{2} y-\frac{1}{2}
\end{aligned}
$$

Substituting for x in (1) we get

$$
\begin{aligned}
& 21 y-14\left(\frac{3}{2} y-\frac{1}{2}\right)=54 \\
& 21 y-21 y+7=54 \\
& 7=54
\end{aligned}
$$

not true
Hence no solutions, parallel lives
3.a. $5 x-4 y=21 \ldots$ (1) : checte
$10 x-y=7$ - - (2)
Multiplying. (1) by-2 weget

$$
\begin{aligned}
-10 x+8 y & =-42 \\
10 x-y & =7 \\
\frac{7 y}{7} y & =-\frac{35}{3} \\
y & =\frac{-355}{7} \\
y & =-5
\end{aligned}
$$

$$
\frac{7 y}{7 y}=-\frac{35}{3} \quad \begin{aligned}
& \text { Alding } \\
& \text { the tur } \\
& \text { equation }
\end{aligned}
$$

substituting y in (1) we get

$$
\begin{gathered}
5 x-4(-5)=21 \\
5 x+20=21 \\
-20=-20 \\
\left.\frac{5 x=\frac{1}{3}}{3}=\frac{1}{5}\right]^{3} \\
\text { Soltion is }\left(\frac{1}{6},-5\right)
\end{gathered}
$$

3.b. $2 y-7 x=6 \rightarrow-7 x+2 y=6$ (1);

$$
\begin{aligned}
& 2 y-7 x=6 \rightarrow-7 x+2 y=6 \\
& 8 x-5 y=4 \rightarrow-8 x-5 y=4 \text { (2), check }
\end{aligned}
$$

$8 x-5 y=4 \rightarrow-8 x=5 y=4$ (2), 解 Plugging $x=-2$ and $y=-\frac{6}{4}$
Multiplying (1) by 5 and (2) by 2 inge (1) get we ger

$$
\begin{gathered}
8 e r \\
-35 x+10 y=30 \\
16 x-16 y=8 \\
\frac{-19 x}{-19}=\frac{38}{-19} \\
x=-2
\end{gathered}
$$

plugging $x=\frac{1}{5}$ and $y=-5$ in (1) we get

$$
\begin{gathered}
5\left(\frac{1}{5}\right)-4(-5)=21 \\
1+20=21 \\
21=21 \quad \text { TRUE }
\end{gathered}
$$

puefiging $x=\frac{1}{5}$ and $y=-5$ in (2) we get
$\cos ^{2}\left(\frac{1}{\beta}\right)-(-5)=7$

$$
\begin{aligned}
2+5 & =7 \\
7 & =7 \text { TRUE }
\end{aligned}
$$

solution is $(-2,-4)$

$$
\begin{gathered}
2(-4)-7(-2)=6 \\
-8+14=6 \\
6=6
\end{gathered} \text { TRUE }
$$

IPlueging $x=-2$ and $y=-5$ in (2) we get $8(-2)-5(-4)=4$ $-16+20=4$

$$
\begin{aligned}
&-16+20=4 \\
& 14=4] \\
& T R U E
\end{aligned}
$$

(1) weget:

$$
\begin{gathered}
2 y-7(-2)=6 \\
2 y+14=6 \\
\frac{2 y}{2 y}=-\frac{8}{3} \\
1 y=-4
\end{gathered}
$$

Substituting $x=-2$ in (1) weg $\quad-16$
3.c. $y=11 x-2$

$$
-22 x=-2 y-4
$$

Rearranging (1) and (2) we get

$$
\begin{align*}
& -11 x+y=-2 \tag{2}\\
& -22 x+2 y=-4 \tag{i}
\end{align*}
$$

3.d. $x+y=0$

$$
y=2
$$

Multiplying (2) by -1 and we get

$$
\begin{array}{r}
x+y=0 \\
-/ y=-2 \\
x=-2
\end{array}
$$

Multiplying (1) by -2 weget, substituting it in (1) we get

$$
22 x-2 y=+4
$$ $-2+y=0$

$+2 y=2$

$$
-22 x+2 y=-4
$$

$$
0=0
$$

Always true hence they have infinitely many solution!
3.e. $-24 x+9 y=3$
-..(1), Solution is $\left(\frac{1}{4}, 1\right)$
check
Multiply (2) by 3 and reaivanging', we get 1 we get

$$
\begin{aligned}
24 x+30 y & =36 \\
-24 x+9 y & =3 \\
\frac{39 y}{39} & =\frac{39}{39} \\
y & =1
\end{aligned}
$$

Substituting $y=1$ in (1) we get,

$$
\begin{gathered}
-24 x+9(1)=3 \\
-24 x+9=3 \\
-24 x=-6 \\
\frac{24}{-24}=\frac{1}{4} \\
\mid x 4
\end{gathered}
$$

$$
\begin{aligned}
& \text { We get } \\
& -24\left(\frac{1}{4}\right)+9(1)=3 \\
& -6+a=3 \\
& 3=3 \text { TRUE }
\end{aligned}
$$

Plugging $x=\frac{1}{4}$ and $Y=\operatorname{lin}(\bar{\omega}$
we get

$$
\begin{gathered}
\text { we get } 2\left(\frac{1}{4}\right)=12 \\
10(1)+88^{2}=12 \\
10+2=12
\end{gathered}
$$

3.f.

$$
\begin{align*}
& x=y \tag{1}\\
& y=x+4
\end{align*}
$$

Rearranging we get

$$
\begin{aligned}
x / y=y & =0 \\
-x+y & =4 \\
0 & =4
\end{aligned}
$$

False statment
Hence the lives are parallel and have no solution
4.a.

$$
\begin{array}{r}
2 x+4 y=10 \tag{1}\\
x+2 y=5
\end{array}
$$

4.b. $21 y-4 x=14$

$$
12 x-3 y=22
$$

Rearranging the equations to $y=m x+b$ we get

$$
\begin{align*}
& 21 y-4 x=14 \\
&+4 x+4 x \\
& \frac{21 y}{21}=\frac{4 x}{21}+\frac{142}{2 x 3} \\
& y=\frac{4}{21} x+\frac{2}{3} \tag{1}\\
& 12 x-3 y=22 \\
&-12 x \\
&-\frac{3 y}{-3}=\frac{-12 x}{-3}+\frac{22}{-3} \\
& y=4 x-\frac{22}{3}
\end{align*}
$$

The two lines have different slopes hence they are consistent and independent
The lines intersect and have one solution
4.c.

$$
\begin{align*}
& 56 x-2 y=12 \tag{1}\\
& 28 x-y=12
\end{align*}
$$

Rearranging (1) and (2) such that we get the lines in the standard form $y=m x+b$

$$
\begin{align*}
& 56 x-2 y=12 \\
& -56 x \quad-56 x \\
& \frac{-2 y}{-2}=\frac{-56 x}{-z}+\frac{12}{-2} \\
& y=28 x-6 \\
& 28 x-y=12 \\
& -28 x \quad-28 x \\
& \frac{-y}{-1}=\frac{-28}{-1} \times \frac{+12}{-1} \\
& y=28 x-12
\end{align*}
$$

Both lives (1) and (2) have the same slope but have different y-intercepts. Hence the lines are parallel and have no solution. We can conclude that the equations are
inconsistent
4.d. The lines intersect and have one solutionstence the system of equations is consistent and independent
4.e.) the two limes are parallel and have no solution Hence the system of equations is inconsistent
4.f.) The two lines overlap and have infinitely many solutions. Hence the system is consistent and dependent
4.g. The two lines inlèrect and have one solution. Hence the system is consistent and independent
5.a.)

$$
\begin{align*}
& x=y+11 \tag{1}\\
& x-y=2 \tag{2}
\end{align*}
$$

Rearranging (1) and (2) weget

$$
\begin{align*}
& y=x-11 \\
& y=x-2 \tag{2}
\end{align*}
$$

slope of (1) $m_{1}=1$
and slope of (2) $m_{2}=1$

Hence they are parallel
Rearranging (1) and (2)

$$
y=-\frac{2}{3} x+8-0, \quad y=\frac{2}{3} x-2
$$

So bo th the lines have same slope.
5.b.

$$
\begin{align*}
& 2 x+3 y=24 \\
& 8 x-12 y=24
\end{align*}
$$ we get

$$
\begin{align*}
& \text { we get } \tag{1}\\
& 2 x+3 y=24 \quad 8 x-12 y=24 \\
& 1-2 x \quad-8 x \quad-8 x \\
& 1-2 x,-12 y=-8 x+\frac{2}{-12} \\
& \frac{3 y}{3}=\frac{-2 x}{3}+\frac{24}{3}, \quad y=\frac{2}{3} x-2
\end{align*}
$$

slope $m_{1}=\frac{-2}{3}, \quad m_{2}=\frac{2}{3}$ the slopes are neither same or opposite reciprocal.

- H ever the lives are ineither parallel nor perpendicular
5.d. $12 y-14 x=4$
$x-10 y=121 \cdots-\frac{-2}{2}$
Rearranging we get
$\begin{array}{cl}x-2 y=\sigma_{i} & , 24 x+12 y=60! \\ -x & ,-24 x\end{array}$

$$
\begin{aligned}
&-x \\
&-2 y=\frac{-x}{-2}+\frac{6}{-2}, \quad \frac{12 y}{12}=-\frac{24}{12} x+\frac{60}{12} \\
& y=-2 x+5-(2)
\end{aligned}
$$

$$
\begin{aligned}
12 y & -14 x \\
& =4 x+14 x \\
& 14 x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-2 y}{-2}=\frac{-x}{-2} \frac{1}{-2} ; \quad y=-2 x+5-(2) \\
& y=\frac{1}{2} x-3-(1)
\end{aligned}
$$

$$
\begin{aligned}
7 & +14 x \\
& +14 x \\
\frac{12 y}{12} & =\frac{714}{12}
\end{aligned}+\frac{4 y}{12} y 5
$$

$$
y=\frac{7}{6} x+\frac{1}{3}
$$

$$
\begin{array}{rl}
0 & 121 \\
x-10 y & -x \\
-x & -x
\end{array}
$$

$$
\begin{aligned}
x-10 y & -x \\
-\frac{10 y}{10} & =\frac{-x}{-10}+\frac{121}{-10} \\
x-121 & -\frac{12}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-101}{10} \times \frac{10}{10} \times-\frac{121}{10}-\frac{6}{2} \\
& y=\frac{1}{10}
\end{aligned}
$$

perpendicular
slopes $m_{1}=\frac{7}{6}$

$$
m_{2}=\frac{1}{10}
$$

The slope ane different newer neither
6.a. Population of city $A=x$

Population of city $B=y$
Hence $x=y+52,123$
orby rearranging $x-y=52,123$

$$
\begin{equation*}
x+y=150,895,023 \tag{1}
\end{equation*}
$$

This is a system of two linear equations. we can choose any method of solving them. Let us use elimination.

$$
\begin{aligned}
& 75473573 \\
& 2 \sqrt{150947146} \\
& -14 \\
& -10 \\
& -\frac{10}{09} \\
& -\frac{8}{014} \\
& -\frac{14}{07} \\
& -\frac{6}{11} \\
& -\frac{10}{014} \\
& -\frac{14}{06} \\
& -\frac{6}{8}
\end{aligned}
$$

$$
\begin{aligned}
75,473,573-y & =52,123 \\
-75473573 & -75,473,571 \\
\frac{-y}{-1} & =\frac{-75,421,450}{-1} \\
y & =75,421,450
\end{aligned}
$$

Population of city $A=75,473,573$
and Population of city $B=75,421,450$
6.b.

let length of the desk $=\ell$
width of the desk $=w$

$$
\begin{equation*}
l=2.5 \mathrm{w} \tag{7}
\end{equation*}
$$

perimeter $=2(l+\omega)$

$$
35=2(1+\omega)
$$

We have a syploin of linear equation d we can choose any method to solve. Let us use substitution.

Substituting. \& freon (1) into (2) we got.

$$
\begin{aligned}
35 & =2(2.5 w+w) \\
35 & =2(3.5 w) \\
\frac{35}{7} & =\frac{7 w}{7} \\
5 & =w \quad \text { or } \quad \omega=5 \mathrm{ft}
\end{aligned}
$$

substitution w in (1) we get

$$
l=(2.5)(5)=12.5 / t
$$

The length of the desk is 12.5 ft and the width is 5 ft
6.c.

$$
\begin{align*}
& x+y=60 \tag{1}\\
& 0.1 x+0.01 y=2.4
\end{align*}
$$

we have a system of linear equation we can choose any method to solve. Let us use elimination

Multiplying (2) by -100 and (1) by 2 we get

$$
\begin{aligned}
-10 x-y & =-240 \\
\because x+4 & =60 \\
-\frac{9 x}{-9} & =\frac{-180}{-9} \\
x & =20 l
\end{aligned}
$$

Substituting $x=20$ in (1) we get

$$
\begin{gathered}
20+y=60 \\
-20 \\
y=400
\end{gathered}
$$

We need to mix 20 l of 10% solution and 40 l of 1% to get the desired solution
6.d. Let the price of one hotdog $=\$ x$ and the price of ore drink $=\$ Y$
for Maria

$$
\left\lvert\, \begin{aligned}
& 2 x+y=21.90 \\
& 3 x+2 y=35.35
\end{aligned}\right.
$$

we now have a system of linear equations We can choose any method to solve. Ret us use elimination.

Multiplying (1) by -2 we get

$$
\begin{gathered}
-4 x-2 y=-43.8 \\
3 x+2 y=35.35 \\
\frac{-x}{-1}=\frac{-8.45}{-1} \\
x=\$ 8.45
\end{gathered}
$$

Substituting $x=8.45$ in (2) we get

$$
\begin{aligned}
& 3(8.45)+2 y=35.35 \\
& 25.35+2 y=35.35 \\
& -25.35
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 y}{2}=\frac{10}{2} \\
& y=5
\end{aligned}
$$

$$
y=5
$$

Cost of a hotdog is $\$ 8.45$ and a drink is $\$ 5$
6.e.

Let speed of plane $P=x \mathrm{mph}$ and speed of plane $Q=y \mathrm{mph}$ Distance travelled by: plane P in 2 hours $=2 x$ plan Q in 2 hours $=2 y$

$$
\text { *note speed }=\frac{\text { Distames }}{\text { time }}
$$

Hence

$$
\text { Also } X=y-100
$$

Now we have a system of equations. Let us use substitution. Substituting x from (2) in (1) we get

$$
\begin{gathered}
2(y-100)+2 y=1000 \\
2 y-200+2 y=1000 \\
4 y-200=1000
\end{gathered}
$$

$$
\begin{aligned}
& 4 y-200=1000 \\
&+200+200 \\
& \frac{4 y}{4}=\frac{1200}{41} 300 \\
& y=300 \mathrm{mph}
\end{aligned}
$$

Substituting $y=300 \mathrm{kin}$ (2) we get

$$
\begin{aligned}
& x=300-100 \\
& x=200 \mathrm{mph}
\end{aligned}
$$

speed of plane P is 200 mph and speed of plane Q is 300 mph .

$$
\begin{array}{lll}
\text { 7. } x+2 y-z=9 & \text { (1) } & \text { Any of the variables could } \\
2 x-y+3 z=-2 & \text { (2) } & \text { be eliminated first, but we } \\
\text { will eliminate } x \text { first. }
\end{array}
$$

$$
3 x-3 y-4 z=1
$$

Step 1: eliminate one variable turewigh forming combinations of the equations so that the syetem in reduced to 2 equations m 2 variables.

$$
\begin{aligned}
\text { multiply (1) by (-2): } \\
\text { add (2) }
\end{aligned} \begin{aligned}
-2 x-4 y+2 z & =-18 \\
2 x-y+3 z & =-2 \\
-5 y+5 z & =-20
\end{aligned}
$$

$$
\begin{aligned}
& \text { to simplify, divide } \\
& \text { both sides by }(-5):
\end{aligned} \quad y-z=4
$$

now amble (3) with one at the omer equations to also elimindex:
multiply (1) by $(-3):-3 x-6 y+3 z=-27$
cia (B)

$$
\begin{equation*}
\frac{3 x-3 y-4 z=1}{-9 y-z=-26} \tag{5}
\end{equation*}
$$

Step 2: Solve the 2 grivation system by either elimination er sjostitotion:

$$
\begin{aligned}
y-z & =4 \\
-7 y-z & =-26
\end{aligned}
$$

$$
4-3-3=-2
$$

$$
-2=-2
$$

3(2) $-3(0)-4(x)=1$
$6-4+4=1$
ld $-q=1$

Note: Solving systems of three equations in three variables is more efficiently handled using a matrix method such as GaussJordan elimination.

$$
\begin{aligned}
& \text { switching to sobstitution, eqn, (4) is selves for } y: y=z+4 \\
& \text { then sobsnitote } z+4 \text { frey in (5) }-9(2+4)-2=-26
\end{aligned}
$$

substituting back to find $y: \begin{array}{r}y \\ y \\ =z+4 \\ =-1+4\end{array}$
$y=3$
then sossristre y ad z values beck into one of original three equations:
(1)

$$
x+2(3)-(-1)-9
$$

$$
x+6+1=9
$$

$x+7=9$
$x=2$

$$
\text { soluxun: }(x, y, 2)=(2,3,-1){ }^{* *}
$$

Additional Resources

1. Go To http://www.kutasoftware.com/free.html
2. Under "Systems of Equations and Inequalities":

- Solving systems of equations by graphing
- Solving systems of equations by substitution
- Solving systems of equations by elimination
- Systems of equations word problems

3. You can print out the worksheets and work on them. The solutions are provided at the end of the worksheets
4. For help, please contact the Math Assistance Area.
