DIY: Matrices: Introduction and Basic Operations

To review the basics Matrices, what they represent, and how to find sum, scalar product, product, inverse, and determinant of matrices, watch the following set of YouTube videos. They are followed by several practice problems for you to try, covering all the basic concepts covered in the videos, with answers and detailed solutions. Some additional resources are included for more practice at the end.

1. Introduction to Matrices Introduction, matrix size, element notation

Note: in the US, we usually denote a matrix A as [A], instead of the A with " "" underscore used in this presentation.
2. Matrix arithmetic basics some terminology, matrix addition, multiplication by a scalar, using equality of matrices
3. Matrix multiplication Matrix multiplication, properties, an application
4. Identity matrix

Note: for an $\mathrm{n} \times \mathrm{n}$ identity matrix, the presenter uses the notation $\mathbf{I}_{\mathrm{nxn}}$ but it is often denoted by \mathbf{I}_{n}.
5. Transpose of a matrix
6. Determinant of a matrix. Note: the determinant of matrix \mathbf{A} can be denoted by $|\mathrm{A}|$ or $\operatorname{det} \mathrm{A}$.
a. 2×2 matrix example
b. Determinant of a 3×3 matrix determinant of a 3×3 matrix using cofactors
c. Shortcut method This video demonstrates the method first mentioned but not demonstrated in the preceding video. Note: This method only works to find the determinant of a 3×3 matrix.
d. Using a calculator
7. Finding Inverses of matrices using:

1. Finding a Matrix Inverse using Gauss-Jordan Elimination
2. Matrix Inverse using Gauss-Jordan Elimination, Ex. 2 (3×3 matrix)
3. Determinants and Cofactors for a 3×3 matrix

Note: The method above works for any size matrix. For a $2 x 2$ matrix, this method results in a familiar shortcut: To find the inverse, interchange the entries on the main diagonal (\downarrow), change the signs on the entries on the other diagonal (\checkmark), then divide each entry by the determinant of the matrix.
Ex.

$$
A=\left(\begin{array}{rr}
2 & -5 \\
8 & -15
\end{array}\right) \quad|A|=\operatorname{det}(A)=(2)(-15)-(-5)(8)=10 \quad A^{-1}=\frac{1}{10}\left[\begin{array}{cc}
-15 & 5 \\
-8 & 2
\end{array}\right]=\left[\begin{array}{cc}
-1.5 & 0.5 \\
-0.8 & 0.2
\end{array}\right]
$$

8. Find solution to a system of equations using:
a. Matrix Inverse: https://www.youtube.com/watch?v=AUqeb9Z3y3k\&t=343s

Note: a row or column matrix can also be referred to as a row or column "vector".
b. Cramer's Rule: https://www.youtube.com/watch?v=BW6897HIOMA

Practice problems: The following problems use the techniques demonstrated in the above videos. The answers are given after the problems. Then detailed solutions, if you need them, are provided after the answer section. For further assistance and help please contact Math Assistance Area.

1. Given $\mathbf{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 1 \\ 0 & 7\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{lll}4 & -1 & 3\end{array}\right]$
a. the size of \mathbf{A} is \qquad b. the size of \mathbf{B} is \qquad
c. B has only 1 \qquad so can be called a \qquad matrix. \mathbf{B}^{T} would be a \qquad matrix.
d. $\mathbf{A}^{\mathrm{T}}=$ \qquad (Find the transpose of \mathbf{A})
e. If $\mathbf{C}=\mathbf{A}$, then $\mathbf{C}=$ \qquad .
f. Solve for $\mathrm{w}, \mathrm{x}, \mathrm{y}$, and z if: $\left[\begin{array}{cc}x+1 & 3 \\ z & y-2\end{array}\right]=\left[\begin{array}{cc}y & x-2 \\ w+4 & w\end{array}\right]$
2. Find the $\mathbf{A}+\mathbf{B}$ and $\mathbf{A}-\mathbf{B}$ for the following matrices if possible
a. $\mathbf{A}=\left(\begin{array}{lll}2 & 4 & 6 \\ 1 & 0 & 1 \\ 0 & 2 & 9\end{array}\right) ; \quad \mathbf{B}=\left(\begin{array}{lll}1 & 0 & 2 \\ 11 & -6 & 4 \\ 0 & 22 & 10\end{array}\right)$
b. $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right) ; \mathbf{B}=\left(\begin{array}{cc}11 & -2 \\ 1 & 0 \\ 254 & 6\end{array}\right)$
c. Using the matrices in part a, what is $\mathbf{3 A - 2 ~ B ~ ? ~}$
3. a. Write a 5×5 identity matrix. (\mathbf{I}_{5})
b. If $\mathbf{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 1 \\ 0 & 7\end{array}\right]$, then $\mathbf{I} \mathbf{A}=$ \qquad where the size of I is \qquad .

Also, $\mathbf{A l}=$ \qquad where the size of I is \qquad .
c. Which is true? $\mathbf{0}_{2,2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
d. If $\mathbf{0}$ is the zero matrix, which of the following is (are) true?

1. $O A=A$
2. $O A=0$
3. $0+A=A$
4. $\mathbf{0}+\mathrm{A}=\mathbf{0}$
5. a zero matrix is always a square matrix
6. Find $\mathbf{A B}$ and $\mathbf{B A}$ if possible
a. $\mathbf{A}=\left(\begin{array}{ccc}4 & 2 & -1 \\ 7 & 0 & 10 \\ 1 & -3 & 0\end{array}\right) \quad ; \mathbf{B}=\left(\begin{array}{c}1 \\ 0 \\ -5\end{array}\right)$
b. $\mathbf{A}=\left(\begin{array}{cc}2 & 4 \\ 1 & -7\end{array}\right) ; \mathbf{B}=\left(\begin{array}{lll}3 & 2 & 1 \\ 0 & 1 & 0\end{array}\right)$
c. $\mathbf{A}=\left(\begin{array}{cc}7 & 0 \\ 1 & -7\end{array}\right) ; \mathbf{B}=\left(\begin{array}{ll}13 & 2 \\ 1 & 5 \\ 0 & 1 \\ 0 & 24\end{array}\right)$
d. $\mathbf{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] ; \quad \mathbf{B}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
7. Find $|\mathrm{A}|$ for the following matrices, if possible:
a) $\mathbf{A}=\binom{1}{1}$
b) $\mathbf{A}=\left(\begin{array}{ll}2 & 6 \\ 3 & 0\end{array}\right)$
c) $\mathbf{A}=\left(\begin{array}{ccc}-2 & 4 & -9 \\ 1 & -5 & -6 \\ -3 & -1 & -7\end{array}\right)$
d) $\mathbf{A}=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 2 & -2 & -1 & -5 \\ -1 & 0 & -8 & -9 \\ 3 & -1 & -10 & 11\end{array}\right)$
e) $\mathbf{A}=\left[\begin{array}{ccc}2 & 1 & 3 \\ -1 & 4 & -2 \\ 1 & 14 & 0\end{array}\right]$
8. Find A^{-1} if it exists.
a) $\mathbf{A}=\left[\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right]$
b) $\mathbf{A}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -2 & -1 \\ 3 & 0 & 0\end{array}\right]$
c) $\mathbf{A}=\left[\begin{array}{cc}2 & -1 \\ 1 & -2 \\ 4 & 3\end{array}\right]$
d) $\mathbf{A}=\left[\begin{array}{ccc}2 & 1 & 3 \\ -1 & 4 & -2 \\ 1 & 14 & 0\end{array}\right]$
e) $\mathbf{A}=[2]$
9. Determine whether the following matrices are inverses of each other
a) $\left(\begin{array}{ll}5 & 7 \\ 2 & 3\end{array}\right)$ and $\left(\begin{array}{cc}3 & -7 \\ -2 & 5\end{array}\right)$
b) $\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$ and $\left(\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$
10. Find the solution of the following system of equations if it exists using matrices.

Using the inverse of the coefficient matrix
a) $\frac{1}{2} x+\frac{1}{3} y=\frac{49}{18}$ $\frac{1}{2} x+2 y=\frac{4}{3}$

Using Cramer's Rule

$$
\text { c) } \begin{aligned}
& 2 x-3 y=-7 \\
& -x-9 y=3
\end{aligned}
$$

Using the inverse of the coefficient matrix
b) $\begin{aligned} 3 x+2 y & =6 \\ y-6 x & =-27\end{aligned}$

Using Cramer's rule

$$
\text { d) } \begin{aligned}
3 x-5 y & =2 \\
5 x-6 z & =22 \\
-5 y-z & =-3
\end{aligned}
$$

Answers:

1. a. 3×2
b. 1×3
c. row; row; column
d. $\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 1 & 7\end{array}\right]$
e. $\left[\begin{array}{ll}2 & 3 \\ 4 & 1 \\ 0 & 7\end{array}\right]$
f. $\{x, y, z, w\}=\{5,3,8,4\}$
2. a. $\mathbf{A}+\mathbf{B}=\left[\begin{array}{ccc}3 & 4 & 8 \\ 12 & -6 & 5 \\ 0 & 24 & 19\end{array}\right] \quad \mathbf{A}-\mathbf{B}=\left[\begin{array}{ccc}1 & 4 & 4 \\ -10 & 6 & -3 \\ 0 & -20 & -1\end{array}\right]$
b. neither $\mathbf{A}+\mathbf{B}$ nor $\mathbf{A}-\mathbf{B}$ is possible
c. $\left[\begin{array}{ccc}4 & 12 & 14 \\ -19 & 12 & -5 \\ 0 & -38 & 7\end{array}\right]$
3. a. $\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
b. $\mathbf{A}, 3 \times 3, A, 2 \times 2$
c. $\mathbf{O}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
d. only 2 and 3 are true
4. a. $\left[\begin{array}{c}9 \\ -43 \\ 1\end{array}\right], \mathbf{B A}$ is not possible \quad b. $\left[\begin{array}{ccc}6 & 8 & 2 \\ 3 & -5 & 1\end{array}\right]$, $\mathbf{B A}$ is not possible
c. $\mathbf{A B}$ is not possbile, $\mathbf{B A}=\left[\begin{array}{cc}93 & -14 \\ 12 & -35 \\ 1 & -7 \\ 24 & -168\end{array}\right]$
d. $\mathbf{A B}=\left[\begin{array}{lll}7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3\end{array}\right], \quad \mathbf{B A}=\left[\begin{array}{lll}3 & 2 & 1 \\ 6 & 5 & 4 \\ 9 & 8 & 7\end{array}\right] \quad$ (Note that $\mathbf{A B}$ and $\mathbf{B A}$ are reflections of the original \mathbf{B}.
5. a) $\operatorname{det} \mathbf{A}$ does not exist. The determinant is only defined for square matrices.
b) $\operatorname{det} \mathbf{A}=-18$
c) $\operatorname{det} \mathbf{A}=186$
d) $|\mathbf{A}|=336$
e) $\operatorname{det} \mathbf{A}=0$
6. a) $\mathbf{A}^{-1}=\left[\begin{array}{cc}1 / 6 & 2 / 3 \\ 1 / 6 & -1 / 3\end{array}\right] \quad$ b) $A^{-1}=\left[\begin{array}{ccc}0 & 0 & \frac{1}{3} \\ \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} \\ 1 & 0 & \frac{-1}{3}\end{array}\right] \quad$ c) not a square matrix. No inverse.
d) since $\operatorname{det} \mathbf{A}=0, \mathbf{A}$ is a singular matrix. It has no inverse.

Note: if \mathbf{A} were the coefficient matrix for a system of 3 equations, the system would have either no solution or an infinite number of solutions.
e) $\operatorname{det}[2]=[1 / 2]$
7. a) yes, they are inverses
b) no, they are not inverses
8. a) $(x, y)=(6,-5 / 6)$
b) $(x, y)=(4,-3)$
c) $(x, y)=\left(\frac{-24}{7}, \frac{1}{21}\right)$
d) $(x, y, z)=(3,-2,4)$

Detailed Solutions
1.a. $[A]$ has 3 rows and 2 columns, so is 3×2
b. [B] has 1 row and 3 columns, so is 1×3
C. [B] has only 1 row so can be called a row matrix. [B] would be a column matrix

$$
\text { if }[B]=\left[\begin{array}{lll}
4 & -1 & 3
\end{array}\right] \text { then }[B]^{\top}=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right]
$$

d. $[A]^{\top}=\left[\begin{array}{lll}2 & 4 & 0 \\ 3 & 1 & 7\end{array}\right] \leftarrow$ column 1 becomes row in transpose $~\left(A m n\right.$ in $[A]$ becomes row 2 in $[A]^{\top}$
e. If $[C]=[A]$, then $[C]=\left[\begin{array}{ll}2 & 3 \\ 4 & 1 \\ 0 & 7\end{array}\right] \quad$ All entries must be equal to \quad the corresponding entries in $[A]$.
f. $\left[\begin{array}{cc}x+1 & 3 \\ z & y-2\end{array}\right]=\left[\begin{array}{cc}y & x-2 \\ \omega+4 & \omega\end{array}\right]$

$$
\text { or }(x, y, z, \omega)=(5,6,8,4)
$$

using $y=6$, solve $y-2=\omega \quad \omega=4$
then, using $\omega=4$, solve $z=\omega+4 \quad z=8$

$$
\text { Q. a. } \left.[A]+[B]=\left[\begin{array}{lll}
2 & 4 & 6 \\
1 & 0 & 1 \\
0 & 2 & 9
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 2 \\
11 & -6 & 4 \\
0 & 22 & 10
\end{array}\right]=\left[\begin{array}{ccc}
2+1 & 4+0 & 6+2 \\
1+11 & 0+(-6) & 1+4 \\
0+0 & 2+22 & 9+10
\end{array}\right]=\left[\begin{array}{ccc}
3 & 4 & 8 \\
12 & -6 & 5 \\
0 & 24 & 19
\end{array}\right]\right]
$$

-2-
2. (cant.)

$$
[A]-[B]=\left[\begin{array}{ccc}
2-1 & 4-0 & 6-2 \\
1-11 & 0-(6) & 1-4 \\
0-0 & 2-22 & 9-10
\end{array}\right]=\left[\begin{array}{ccc}
1 & 4 & 4 \\
-10 & 6 & -3 \\
0 & -20 & -1
\end{array}\right]
$$

b. [A] and [B] cannot be added or subtracted because they are not the same size.
c. $3[A]-2[B]=3\left[\begin{array}{lll}2 & 4 & 6 \\ 1 & 0 & 1 \\ 0 & 2 & 9\end{array}\right]-2\left[\begin{array}{ccc}1 & 0 & 2 \\ 11 & -6 & 4 \\ 0 & 22 & 10\end{array}\right]$
$=\left[\begin{array}{ccc}6 & 12 & 18 \\ 3 & 0 & 3 \\ 0 & 6 & 27\end{array}\right]-\left[\begin{array}{ccc}2 & 0 & 4 \\ 22 & -12 & 8 \\ 0 & 44 & 20\end{array}\right]=\left[\begin{array}{ccc}6-2 & 12-0 & 118-4 \\ 3-22 & 0-(-12) & 3-8 \\ 0-0 & 6-44 & 27-20\end{array}\right]$

$$
=\left[\begin{array}{ccc}
4 & 12 & 14 \\
-19 & 12 & -5 \\
0 & -38 & 7
\end{array}\right]
$$

3.a. I_{5} has "1" for each diagonal entry ($i_{11}, i_{22}, i_{33}, i_{44}, i_{55}$) and "0" for ac other entries.

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

b $[I A]=$

Also, $[A][I]=[A]$ but here, [I] is 2×2 [A].[I]
${ }^{3 \times 2}-\frac{3 \times 2}{2 \times 2}$ most 16 on val

MATH ASSISTANCE AREA

Stop by or call (630) 942-3339
3. (cant) c. $\mathrm{O}_{2,2}$ is a 2×2 zero matrix which has all entries $=0$

$$
0_{2,2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

d. 1. $O A=A$ False $O \cdot A=0$
2. $O A=0$ True
3. $0+A=A$ True $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad a+A=\left[\begin{array}{ll}0+a & 0+b \\ 0+c & 0+d\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
4. $O+B=0$ False
is, "a zero matrix is always a square matrix" is false.

$$
\text { For example, if } A=\left[\begin{array}{ll}
2 & 3 \\
4 & 1 \\
0 & 7
\end{array}\right] \text { then for } A+0,0=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

The zero matrix assumes whatever size is required for the operation in which it is used.
4. a. $\begin{aligned} & {[A] \cdot[B]} \\ & \begin{array}{cc}3 \times 3 & 3 \times 1 \\ \text { Size of product }\end{array} \\ & \overbrace{\text { Same }} \jmath^{1}\end{aligned}=\left[\begin{array}{ccc}4 & 2 & -1 \\ 7 & 0 & 10 \\ 1 & -3 & 0\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -5\end{array}\right]=\left[\begin{array}{l}4(1)+2(0)+(-1)(-5) \\ 7(1)+0(0)+10(-5) \\ 1(1)+(-3)(0)+0(-5)\end{array}\right]=\left[\begin{array}{c}9 \\ -43 \\ 1\end{array}\right]$

$$
[B] \cdot[A]
$$

$$
3 \times 1 \quad 3 \times 3
$$

1 these dimensions are not the same, So $B A$ is not possible.

$$
\text { b. } \begin{array}{rl}
{[A] \cdot[B} \\
2 \times 2 & 2 \times 3
\end{array}=\left[\begin{array}{cc}
2 & 4 \\
1 & -7
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
2(3)+4(0) & 2(2)+4(1) & 2(1)+4(0) \\
1(3)+(-7)(0) & 1(2)+(-7)(1) & (0)+(-7)(0)
\end{array}\right]
$$

$[B] \cdot[A]_{2 \times 3}$ not equal, so $B \cdot A$ is 2×3 not possible
4. cart $C \quad[A][B]$

$$
\begin{aligned}
& \text { [} A \times 2 \text { [B] is not possible } \\
& \begin{array}{l}
{[B][A]} \\
4 \times 2 \\
\frac{2 \times 2}{2} \times 2 \\
\text { equal }
\end{array}=\left[\begin{array}{cc}
13 & 2 \\
1 & 5 \\
0 & 1 \\
0 & 24
\end{array}\right]\left[\begin{array}{cc}
7 & 0 \\
1 & -7
\end{array}\right]=\left[\begin{array}{ll}
13(7)+2(1) & 13(0)+2(-7) \\
1(7)+5(1) & 1(0)+5(-7) \\
0(7)+1(1) & 0(0)+1(-7) \\
0(7)+24(1) & 0(0)+24(-7)
\end{array}\right] \\
& =\left[\begin{array}{cc}
91+2 & 0-14 \\
7+5 & 0-35 \\
0+1 & 0-7 \\
0+24 & 0-168
\end{array}\right]=\left[\begin{array}{cc}
93 & -14 \\
12 & -35 \\
1 & -7 \\
24 & -168
\end{array}\right] \\
& \text { d. }[A][B]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{ccc}
0(1)+0(4)+1(7) & 0(2)+0(5)+1(8) & 0(3)+0(4)+1(0) \\
0(1)+1(4)+0(7) & 0(2)+1(5)+0(8) & 0(3)+1(6)+0(9) \\
1(1)+0(4)+0(7) & 1(2)+0(5)+0(8) & 1(3)+0(4)+0(9)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0+0+7 & 0+0+8 & 0+0+9 \\
0+4+0 & 0+5+0 & 0+6+0 \\
1+0+0 & 2+0+0 & 3+0+0
\end{array}\right]=\left[\begin{array}{lll}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right] \\
& {[B \backslash A]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1(0)+2(0)+3(1) & 4(0)+2(0)+3(0) & 1(1)+2(0)+3(0) \\
4(0)+5(0)+6(1) & 4(0)+1(5)+0(0) & 4(0)+5(0)+4(0) \\
2(0)+8(0)+4(0) & 7(0)+8(1)+9(0) & 2(0)+8(0)+9(0)
\end{array}\right]} \\
& =\left[\begin{array}{lll}
0+0+3 & 0+2+0 & 1+0+0 \\
0+0+6 & 0+5+0 & 4+0+0 \\
0+0+9 & 0+8+0 & 7+0+0
\end{array}\right]=\left[\begin{array}{lll}
3 & 2 & 1 \\
6 & 5 & 4 \\
9 & 8 & 7
\end{array}\right]
\end{aligned}
$$

Note: Although [A] looks similar to an identity matrix, instead of leaving the other matrix unchanged, it produces a reflection of the other matrix.
5. a) $\operatorname{det} A$ doesn't exist since A is not a square matrix.
b) $\operatorname{det}\left[\begin{array}{ll}2 & 6 \\ 3 & 0\end{array}\right]=2(0)-(6)(3)=0-18=-18$

$$
\begin{aligned}
\text { s) } \begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
-2 & 4 & -9 \\
1 & -5 & -6 \\
-3 & -1 & -7
\end{array}\right] & \left.\left.=+(-2)\left|\begin{array}{cc}
-5 & -6 \\
-1 & -7
\end{array}\right|-(4)\left|\begin{array}{cc}
1 & -6 \\
-3 & -7
\end{array}\right|+(-4) \right\rvert\, \begin{array}{cc}
1 & -5 \\
-3 & -1
\end{array}\right] \\
& =-2[(-5)(-7)-(-6)(-1)]-4[1(-7)-(-4)(-3)] \\
& -9[1(-1)-(-5)(-3)] \\
& =-2(35-6)-4(-7-18)-9(-1-15) \\
& =-2(29)-4(-25)-9(-16) \\
& =-58+100+144=186
\end{aligned}
\end{aligned}
$$

** d. The $+1-\operatorname{sign}$ for each cofactor of the determinant s determined by its location. For an element $a_{i j}$, if $i+j=$ odd, the sign is $(-)$ if $i+j=$ even, the sign is (t)

$$
\text { for a } 4 \times 4 \text { matrix, the signs are }\left[\begin{array}{l}
+-+- \\
-++ \\
+-+- \\
-+-+
\end{array}\right] \text { ex. } a_{12} \text { : } 1+2=0 \text { odd, } s 0
$$

$$
\left|\begin{array}{cccc}
1 & 0 & 0 & 1 \\
2 & -2 & -1 & -5 \\
-1 & 0 & -8 & -9 \\
3 & -1 & -10 & 11
\end{array}\right|=+(1)\left|\begin{array}{ccc}
-2 & -1 & -5 \\
0 & -8 & -9 \\
-1 & -10 & 11
\end{array}\right|-(0)\left|\begin{array}{ccc}
2 & -1 & -5 \\
-1 & -8 & 9 \\
3 & -10 & 11
\end{array}\right|+(0)\left|\begin{array}{ccc}
2 & -2 & -5 \\
-1 & 0 & -9 \\
3 & -1 & 11
\end{array}\right|
$$

* terminology: in this term, $+0| |$ is called cofactor 13 or C_{13}
The " O " is entry ${ }_{13}$. After eliminating row 1 ais column 3, the determinant of the remaining 3×3 matrix is called "Minot ${ }_{13}$ "or M_{13}.
- (1) $\left|\begin{array}{rrr}2 & -2 & -1 \\ -1 & 0 & -8 \\ 3 & -1 & -10\end{array}\right|$

Note:
The second and third terms are $0.1=0$, so these determinants do not need to be calculated.

$$
\begin{aligned}
& =1\left[\begin{array}{cc}
\left.-2\left|\begin{array}{cc}
-8 & -9 \\
-10 & 11
\end{array}\right|-(-1)\left|\begin{array}{cc}
0 & -9 \\
-1 & 11
\end{array}\right|+(-5)\left|\begin{array}{cc}
0 & -8 \\
-1 & -10
\end{array}\right|\right]-0+0 \\
-1\left[+2\left|\begin{array}{cc}
0 & -8 \\
-1 & -10
\end{array}\right|-(-2)\left|\begin{array}{cc}
-1 & -8 \\
3 & -10
\end{array}\right|+(-1)\left|\begin{array}{cc}
-1 & 0 \\
3 & -1
\end{array}\right|\right] \\
=-2(-88-90)+(0-9)-5(0-8) & -1[2(0-8)+2(10+24)-1(1-0)] \\
=-2(-178)-9+40-[-16+68-1] & =356-9+40+16-68+1 \\
& =356+40+16+1-9-68 \\
& =413-77 \\
& =336
\end{array}\right.
\end{aligned}
$$

* Finding the determinant of anything larger than a 3×3 matrix is tedious and highly subject to arithmetic errors. These are usually done on a graphing calculator of computer.

6. a) $\left.\stackrel{A}{\left[\begin{array}{cc|cc}2 & 4 & 1 & 0 \\ 1 & -1\end{array}\right.} \begin{array}{c}0 \\ 1\end{array}\right] \xrightarrow[R_{1} \rightarrow R_{2}]{R_{2} \rightarrow R_{1}}\left[\begin{array}{cc|cc}1 & -1 & 0 & 1 \\ 2 & 4 & 1 & 0\end{array}\right] \xrightarrow{R_{2}-2 R_{1} \rightarrow R_{3}}\left[\begin{array}{cc|cc}1 & -1 & 0 & 1 \\ 0 & 6 & 1 & -2\end{array}\right]$
b) $\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 2 & -2 & -1 & 0 & 1 & 0 \\ 3 & 0 & 0 & 0 & 0 & 1\end{array}\right] \xrightarrow{\xrightarrow{-2 \rho Q_{1} \rightarrow R_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -2 & -3 & -2 & 1 & 0 \\ 3 & 0 & 0 & 0 & 0 & 1\end{array}\right] \xrightarrow{a_{3}-3 R_{1} \rightarrow R_{3}}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -2 & -3 & -2 & 1 & 0 \\ 0 & 0 & -3 & -3 & 0 & 1\end{array}\right]}$
$\xrightarrow{R_{2} /(2) \rightarrow R_{2}}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 / 2 & 1 & -1 / 2 & 0 \\ 0 & 0 & -3 & -3 & 0 & 1\end{array}\right] \xrightarrow{R_{3}\left((3) \rightarrow R_{3}\right.}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 3 / 2 & 1 & -1 / 2 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 / 3\end{array}\right]$

$$
\xrightarrow{R_{1}-R_{3} \rightarrow R_{1}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 / 3 \\
0 & 1 & 3 / 2 & 1 & -1 / 2 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 / 3
\end{array}\right] \xrightarrow{R_{2}-\frac{3}{2} R_{3} \rightarrow R_{2}}\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 0 & 0 & 1 / 3 \\
0 & 1 & 0 & -1 / 2 & -1 / 2 & 1 / 2 \\
0 & 0 & 1 & 1 & 0 & -1 / 3
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 0 & \frac{1}{3} \\
-\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\
1 & 0 & -\frac{1}{3}
\end{array}\right]
$$

c) $[A]$ has no inverse since it is not a square matrix,
d) $[A]$ is the same matrix from 5 .e. so we know that $\operatorname{det} A=0$. Therefore [A] has no inverse. But here is what happens if we try to find $[A]^{-1}$:

$$
\left[\begin{array}{ccc|ccc}
2 & 1 & 3 & 1 & 0 & 0 \\
-1 & 4 & -2 & 0 & 1 & 0 \\
1 & 14 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{1} \rightarrow R_{3}]{R_{3} \rightarrow R_{1}}\left[\begin{array}{ccc|ccc}
1 & 14 & 0 & 0 & 0 & 1 \\
-1 & 4 & -2 & 0 & 1 & 0 \\
2 & 1 & 3 & 1 & 0 & 0
\end{array}\right]
$$

$$
\xrightarrow[R_{3}-2 R_{2} \rightarrow R_{3}]{R_{2}+R_{1} \rightarrow R_{2}}\left[\begin{array}{ccc|ccc}
1 & 14 & 0 & 0 & 0 & 1 \\
0 & 18 & -2 & 0 & 1 & 1 \\
0 & -27 & 3 & 1 & 0 & -2
\end{array}\right] \xrightarrow[R_{3} / R_{3} \rightarrow R_{2}]{R_{2-27} \rightarrow R_{3}}\left[\begin{array}{ccc|ccc}
1 & 14 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 / 9 & 0 & 1 / 8 & 1 / 8 \\
0 & 1 & -1 / 9 & -1 / 27 & 0 & 2 / 27
\end{array}\right] \xrightarrow[\substack{\text { (ant. } \\
\text { next } \\
\text { Pay y }}]{ }
$$

-8-

$$
\left[\begin{array}{ccc|ccc}
1 & 14 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 / 9 & 0 & 1 / 18 & 1 / 18 \\
0 & 1 & -1 / 9 & -1 / 27 & 0 & 1 / 27
\end{array}\right] \xrightarrow{\mathrm{P}_{2}-k_{2} \rightarrow e_{3}}\left[\begin{array}{ccc|ccc}
1 & 14 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 / 9 & 0 & 1 / & 1 / 18 \\
0 & 0 & 0 & -1 / 27 & -1 / 18 & 1 / 54
\end{array}\right]
$$

With a bottom row of all zeros, we cannot continue
e. if $[A]=[2]$, then $[A]^{-1}=[1 / 2] \quad[2 \mid 1] \xrightarrow{\frac{1}{2} R_{1}}\left[1 \left\lvert\, \frac{1}{2}\right.\right]$

$$
[A][A]^{-1}=[2][1 / 2]=[1] \text { and }[A][A]=[1 / 2][2]=[1]
$$

$$
\begin{gathered}
\text { 7.a. }\left[\begin{array}{cc}
5 & 7 \\
2 & 3
\end{array}\right]\left[\begin{array}{cc}
3 & -7 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{cc}
5(3)+7(-2) & 5(-7)+(7)(5) \\
2(3)+3(-2) & 2(-7)+3(5)
\end{array}\right]=\left[\begin{array}{cc}
15-14 & -35+35 \\
6-6 & -14+15
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{cc}
3 & -7 \\
-2 & 5
\end{array}\right]\left[\begin{array}{cc}
5 & 7 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
15-14 & 21-21 \\
-10+10 & -14+15
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{[0]}
\end{gathered}
$$

Since $[A][B]=[B][A]=I,[A]$ and $[B]$ are inverses.

$$
\text { b. }\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1+0+0 & -2+2+0 & 0+0+0 \\
0+0+0 & 0+1+0 & 0+0+0 \\
0+0+0 & 0+1+0 & 0+0+0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \neq I
$$

These matrices are not inverses
In fad, $\operatorname{det}[A]=0$ ($[A]$ is a singular main x) so A^{-1} doesn't exist. In general, a matrix with a column or row of all zero entries will be a singular matrix.

$$
\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
\frac{49}{18} \\
4 / 3
\end{array}\right]
$$

$$
[A][x]=[b]
$$

$$
[A]^{-1}[A][X]=[A]^{-1}[b]
$$

$$
[I][x]=[x]=[A]^{-1}[b] \text { where }[A]^{-1}=\left[\begin{array}{cc}
12 / 5 & -4 / 5 \\
{[-3 / 5} & 3 / 5
\end{array}\right]
$$

$$
[A]^{-1}[b]=\left[\begin{array}{cc}
12 / 5 & -2 / 5 \\
-3 / 5 & 3 / 5
\end{array}\right]\left[\begin{array}{l}
49 / 18 \\
4 / 3
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{5} \cdot \cdot \frac{4}{18}-\frac{2}{5} \cdot \frac{4}{3} \\
\frac{-3}{5} \cdot \frac{49}{18}+\frac{3}{5} \cdot \frac{4}{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
98 / 15-8 / 15 \\
-49 / 30+12 / 15
\end{array}\right]=\left[\begin{array}{c}
99 / 15 \\
{\left[\frac{-49}{30}+\frac{24}{30}\right.}
\end{array}\right]=\left[\begin{array}{c}
\frac{90}{15} \\
-\frac{25}{30}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-\frac{5}{6}
\end{array}\right]
$$

$$
x=6 \quad y=-5 / 4
$$

$$
\text { b. }\left[\begin{array}{cc}
3 & 2 \\
-6 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
6 \\
-27
\end{array}\right]
$$

$$
[A]^{-1}:\left[\begin{array}{rr|rr}
3 & 2 & 1 & 0 \\
-6 & 1 & 0 & 1
\end{array}\right]
$$

$$
[A] \cdot[x]=[b]
$$

$$
\xrightarrow{R_{2}+2 h_{\rightarrow} \rightarrow R_{2}}\left[\begin{array}{ll|ll}
3 & 2 & 1 & 0 \\
0 & 5 & 2 & 1
\end{array}\right] \frac{R_{3} / 3 \rightarrow R_{2}}{R_{5} \rightarrow R_{2}}\left[\begin{array}{ll|ll}
1 & 2 / 3 & 1 / 3 & 0 \\
0 & 1 & 1 / 5 & 1 / 5
\end{array}\right]
$$

$$
\xrightarrow{R_{1}-\frac{2}{5} R_{2} \rightarrow R_{2}}\left[\begin{array}{ll|ll}
1 & 0 & 1 / 5 & -2 / 15 \\
0 & 1 & 2 / 5 & 1 / 5
\end{array}\right] \quad(A]^{-1}=\left[\begin{array}{cc}
\frac{1}{15} & -\frac{2}{15} \\
\frac{2}{5} & \frac{1}{5}
\end{array}\right]
$$

$$
\begin{array}{r|ccc}
R_{1} & 1 & \frac{2}{3} & \frac{1}{3} \frac{5}{5} \\
-\frac{2}{3} R_{2} & 0 & -\frac{2}{3} & -\frac{4}{15} \\
\hline 1 & \frac{-2}{15} \\
\hline 1 & 01 / 15 & -2 / 15
\end{array}
$$

(cont. next page)

$$
\begin{aligned}
& \text {-9- }
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{\frac{3}{10} R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|cc}
1 & 2 / 3 & 2 & 0 \\
0 & 1 & -3 / 5 & 3 / 5
\end{array}\right] \xrightarrow{R_{1}-\frac{2}{3} s_{2}, R_{3}}\left[\begin{array}{ll|l|}
1 & 0 & 12 / 5 \\
0 & 1 & -3 / 5 \\
0 & 3 / 5
\end{array}\right] \\
& \begin{array}{ccccc}
R_{1} & 1 & \frac{2}{3} & 2 & 0 \\
-\frac{2}{3} R_{2} & 0 & -\frac{2}{3} & \frac{2}{2} & -\frac{2}{5} \\
1 & 0 & 12 / 5 \\
\hline 15 / 5
\end{array} \\
& \text { The austen con be cmitho ac: }
\end{aligned}
$$

$-10-$

$$
\begin{aligned}
{[x]=[A]^{-1}[b]=} & {\left[\begin{array}{l}
x \\
y
\end{array}\right] }
\end{aligned}=\left[\begin{array}{cc}
\frac{1}{15} & \frac{-2}{15} \\
\frac{2}{5} & \frac{1}{5}
\end{array}\right]\left[\begin{array}{c}
6 \\
-27
\end{array}\right] .\left[\begin{array}{l}
\frac{1}{15}(6)-\frac{2}{15}(-27) \\
\frac{2}{5}(6)+\frac{1}{5}(-27)
\end{array}\right] .
$$

8.c. $\begin{aligned} 2 x-3 y & =-7 \\ -x-9 y & =3\end{aligned} \rightarrow\left[\begin{array}{cc}2 & -3 \\ -1 & -9\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-7 \\ 3\end{array}\right] \quad[A][x]=[b]$

For Crammer's role: $\begin{aligned} & D=\left|\begin{array}{cc}2 & -3 \\ -1 & -4\end{array}\right|=2(-9)-(-1)(-3) \\ &=-18-3\end{aligned}$

$$
=-21
$$

Replacing the x-coefficients in $[A]$ with the $[b]$ gives:

$$
\begin{aligned}
D_{x}=\left|\begin{array}{rr}
-7 & -3 \\
3 & -9
\end{array}\right| & =(-7)(-9)-(3)(-3) \\
& =63+9 \\
& =72
\end{aligned}
$$

then $x=\frac{D_{x}}{D}=\frac{72}{-21}=-\frac{24}{7}$
Replacing the y-coefficients in $[A]$ with $[6]$ gives:

$$
\begin{aligned}
& \qquad \begin{array}{l}
D_{y}=\left|\begin{array}{rr}
2 & -7 \\
-1 & 3
\end{array}\right|=2(3)-(-1)(-7)=6-7=-1 \\
\qquad y=\frac{D_{y}}{D}=\frac{-1}{-21}=\frac{1}{21}
\end{array} \\
& \text { So }(x, y)=\left(-\frac{24}{7}, \frac{1}{21}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8.d } \begin{array}{c}
3 x-5 y=19 \\
5 x-6 z=-9 \\
-5 y-z=-6
\end{array} \rightarrow\left[\begin{array}{ccc}
3 & -5 & 0 \\
5 & 0 & -6 \\
0 & -5 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
19 \\
-9 \\
6
\end{array}\right] \\
& \begin{aligned}
& D=\left|\begin{array}{ccc}
3 & -5 & 0 \\
5 & 0 & -6 \\
0 & -5 & -1
\end{array}\right|=3(0)(-1)+(-5)(-6)(0)+0(5)(-5) \\
&-0(0)(0)-(-5)(5)(-1)-(3)(-6)(-5)
\end{aligned} \\
& =0+0+0-0-25-90=-115 \\
& D_{x}=\left|\begin{array}{rrr}
19 & -5 & 0 \\
-9 & 0 & -6
\end{array}\right|=19(0)(-1)+(-5)(-6)(6)+0(-9)(-5) \\
& -(0)(0)(6)-(-5)(-9)(-1)-19(-6)(-5) \\
& =0+180+0-0+45-570 \\
& =225-570=-345 \\
& x=\frac{D_{x}}{D}=\frac{-345}{-115}=3
\end{aligned}
$$

$$
\begin{aligned}
& D_{y}=\left|\begin{array}{ccc}
3 & 19 & 0 \\
5 & -9 & -6 \\
0 & 6 & -1
\end{array}\right|=\begin{array}{l}
\\
= \\
\\
=2(-9)(-1)+(19)(-4)(0)+(0)(5)(6)-0(-9)(0)-19(5)(-1)-3(-6)(6)
\end{array} \\
& \begin{aligned}
& y=\frac{D_{y}}{D}=\frac{230}{-115}=-2
\end{aligned} \\
& \begin{aligned}
& D_{z}=\left|\begin{array}{ccc}
3 & -5 & 19 \\
5 & 0 & -9 \\
0 & -5 & 6
\end{array}\right|=\begin{aligned}
& 3(0)(6)+(-5)-9)(0)+(19)(5)(-5)-19(0)(0)-(-5)(5)(6)-3(-9)(-5) \\
& =0+0-475-0+150-135 \\
& =-610+150=-460
\end{aligned} \\
& z=\frac{D_{z}}{D}=-\frac{460}{-115}=4
\end{aligned} \\
& \\
& (x, y, z)=(3,-2,4)
\end{aligned}
$$

Additional Resources

1. Go to http://www.kutasoftware.com/freeipc.html
2. Under "Matrices and Systems" find:

- Matrix operations
- Matrix inverses and determinants
- Matrix equations
- Cramer's Rule
- Multivariable linear systems and row operations

You can print out the worksheets and work on them. The solutions are provided at the end of the worksheets
3. For help please contact the Math Assistance Area.

