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  _________________________ 

*Even in the early 20th century, the existence of atoms was still a controversial issue.  3 

 
A MECHANICAL ANALOGY TO 

THE MILLIKAN OIL DROP EXPERIMENT 
 

In this investigation, you will perform a simulation of the famous “Millikan oil-drop 
experiment.”  In his experiment performed in 1909, American physicist Robert Millikan 
was able to determine the elementary charge of an electron.  He did this by observing small 
electrically charged oil droplets as they rose and fell at terminal velocity under the 
influence competing electrical and gravitational forces.  However, rather than trying to 
painstakingly observe the motion of tiny oil droplets to measure the elementary charge as 
Millikan did, you will perform the same basic methodology to determine the “elementary 
mass” of a particular hex nut under the influence of competing gravitational and buoyant 
forces.  As a result, you will essentially observe the same physics in a hands-on fashion, but 
with much less eyestrain and experimental difficulty.   
 

Background 
 

Until the late 1890’s, atoms were believed* to be the indivisible fundamental building 
blocks of matter.  However, in 1897 English physicist Joseph John (J. J.) Thompson 
demonstrated that atoms did in fact consist of smaller electrically charged particles.  He did 
so by heating gas atoms in a strong electric field.  This resulted in ionization of the gas 
atoms and produced what was known at the time as cathode rays. By observing the 
deflection of these cathode rays using controlled electric and magnetic fields, Thompson’s 
experiments led to the discovery that these cathode rays were streams of negatively charged 
particles that are now called electrons. 
 
In the original experiment, Millikan’s arrangement consisted of a cylindrical enclosure in 
which a mist of oil was sprayed and allowed to fall through a small opening under the 
influence of gravity at terminal velocity into a region between two plates that served as a 
capacitor to produce a vertical electric field.  (See Fig. 1)  An x-ray source was used to 
ionize molecules in the air of the chamber.  The free electrons that resulted attached 
themselves to oil droplets falling through the chamber.  By varying the voltage between the 
capacitor plates, the electric field could be made to cause a particular oil drop to rise or fall 
or remain stationary. The mass of any given oil drop was measured from the terminal 
velocities during the rise and fall of the oil drop.  With the mass of the oil drop and voltage 
necessary to hold the oil drop stationary, the charge on the oil drop was measured. 
 

 
 

Fig. 1: Schematic layout of Millikan’s apparatus. 
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Through repeated measurements of many oil drops, Millikan found that the electric charge 
on any given oil drop was always an integer multiple of a lowest value.  This lowest value 
was the magnitude of electric charge for a single electron: the elementary charge, e, where  
 

e = 1.602 x 10–19 C. 
 

(Recall that electrons are negatively charged.  That is, the charge of a single electron is 
actually –e.) 
 
Questions: Consider an electrically charged 
oil drop of mass M that is moving between 
the capacitor plates of the chamber at its 
terminal velocity.  What can be said about 
the net force that acts on the oil drop?  In the 
space to the right, sketch a free-body 
diagram on the oil drop in this case.  Be sure 
to label all the forces on your diagram. 
 
In your diagram above, it is likely that you assumed no “frictional effects” on the oil drop 
due to the air in the chamber.  However, in order to accurately determine the elementary 
charge, Millikan had to deal with a speed-dependent viscous drag of the oil drops in the air. 
 
 Questions: Redraw your free-body diagram 
for the oil drop to include viscous drag. 
Again, be sure to label all the forces on your 
diagram.  
 
 
 
 
Question: Based on the direction that you indicated for the viscous drag on your free-
body-diagram, is the oil drop in your second diagram a “floater” or a “sinker?”  Explain. 
  
 
 
 
 
 
Checkpoint: Consult with your instructor before proceeding. Instructor’s OK:    
            
 
In an analogous fashion to Millikan’s experiment, you will observe small canisters that 
contain unknown numbers of hex nuts as they move at terminal velocity through a column 
of water in order to determine the mass of an individual hex nut.  Refer to Table 1 to see 
the relationship between Millikan’s experiment and the analogous mechanical simulation.  
A schematic layout of your experimental set-up is shown in Fig. 2. 
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Fig. 2: Schematic layout of the apparatus used in the mechanical  
hex nut analogy to the Millikan oil drop experiment. 

 
In this mechanical analogy, it should be noted that unlike Millikan’s experiment in which 
the gravitational force varied as different oil drops had different masses, the buoyant force 
(which is analogous to Millikan’s gravitational force) would be constant since all of the 
canisters are the same size.  Refer to Table 1 below to see the relationship between 
Millikan’s experiment and the analogous mechanical simulation. 
 
Table 1 Millikan’s Oil Drop 

Experiment Mechanical Analogy  
 

 Electron Charge Hex Nut Mass  
 

 Oil Drop Plastic Canister  
 

 Gravitational Force Buoyant Force  
 

 Electric Force Gravitational Force  
 

 Viscous Air Drag Viscous Water Drag  
 

 
Question: Why is the electric force in Millikan’s experiment analogous to the gravitational 
force (rather the buoyant force) in the mechanical experiment? 
 
 
 
 
 
Checkpoint: Consult with your instructor before proceeding. Instructor’s OK:    
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Starting with Newton’s 2nd law of motion, we can write the vector sum of all the forces 
acting on the canister as the mass M of the canister times the acceleration a.  That is,  

 

 . (1) 

 
At terminal speed vt, the acceleration is zero.  Rewriting the force vector equation as a 
scalar equation, we have 
 

 ,  (2) 

 
where it is assumed that “up” is taken to be the +y-direction.  The choice of the  is 
determined by the whether the canister is a “sinker” a or a “floater.” 
 
Question: In the above equation involving Fdrag, which sign (+ or –) is associated with the 
sinkers and which sign is associated with the floaters?  Explain your reasoning. 
 
 
 
 
 
 
According to Archimedes’ principle, the upward buoyant force had a magnitude equal to 
the weight of the fluid displaced by the submerged object.  If you have already covered 
buoyancy in your physics studies, you may recall that the magnitude of the upward buoyant 
force on an object immersed in a fluid is given by 
 

  (3) 

 
where rfluid is the density of the fluid, Vsub is the volume of the submerged portion of the 
object, and g is the familiar acceleration due to gravity (9.8 m/s2).  In this case, rfluid is just 
the density of water (1000 kg/m3) and the submerged portion of the canister is the full 
volume of the canister Vcan, since the entire canister is submerged during the 
measurements. 
 
For the purpose of this investigation, we will assume1 that the magnitude of the viscous 
drag is proportional to v2.  That is, Fdrag = Cv2, where C is the “effective drag coefficient” 
that accounts for the density of the fluid as well as the shape and cross-sectional area of the 
canister.  In order to determine the “elementary mass” of the hex nuts used in this 
experiment, you will first have to determine a numerical value for C.   
 
With the total weight of the canister (force of gravity) equal to Mg, the force equation 
becomes 
 

 . (4) 

!
F∑ =
!
Fbouy +

!
Fgrav +

!
Fdrag =M

!a

Fbouy −Fgrav ±Fdrag = 0

±

Fbuoy = ρ fluidVsubg

ρwaterVcang−Mg±Cvt
2 = 0
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Questions: Rearrange Eqn. (4) to formulate an expression for the effective drag coefficient 
C, in terms of all the other measureable variables.  What are the units of C? 
 
 
 
 
 
 
Checkpoint: Consult with your instructor before proceeding.  Instructor’s OK:    
            

 
Part I 

Determination of Effective Drag Coefficient 
 
Your group will need the following materials/equipment for this part: 

• 1 clear 5-cm diameter pipe at least 1.5 m long (water-filled and fitted with stoppers)  
• 1 tall ring stand and clamps (to secure the pipe vertically) 
• 1 bucket/tub (to minimize spillage) 
• 1 meterstick/tape 
• 1 stopwatch 
• 1 strong neodymium magnet 
• several identical water-tight canisters with varying masses of sand (or metal shot) 
• 1 beaker (or small tub) of water 
• 1 graduated cylinder 

 
Suggestions for best results: 
 
• Any air bubbles attached to the canister can have a significant effect on the buoyancy 

of the canister and therefore, the terminal speed.  For consistency, be sure to shake off 
air bubbles attached to the canister prior to release.   

• In order to achieve the most accurate results, you will need to note the location of 
same part each canister at “eye level” at it travels through the pipe.  Be sure to move 
up and down with the canister so that your eyes are even with the starting and 
stopping lines. 

• Due to the fact that the canisters may wobble or fishtail as they sink or rise, it is 
important to measure each canister several times in order to determine an average for 
its terminal speed.  

• The shape of the leading end of the canister will affect the value of the effective drag 
coefficient.  The same end of the canister must “lead” whether the canister is a sinker 
or a floater.  For this experiment, the sinkers are turned up side down and released 
from the top while the floaters are carefully dragged to the bottom of cylinder right 
side up with a strong neodymium magnet and then released. 
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Procedure 
 

1. Using the canisters specially marked for Part I, separate the “floaters” from the 
“sinkers” by placing them one at a time in a beaker of water and observing their 
behavior.  Record the mass of each sinker in Table 1 and each floater in Table 2 
below. 

2. For a sinker, turn the canister up side down and hold in place at the top of the pipe.  
Be sure to shake off any air bubbles as these can greatly affect the terminal speed. 

3. Release the canister.  When the bottom of the canister  (which is now on top!) crosses 
the top line, start the stopwatch.  When that same part of the canister crosses the 
lower line, stop the stopwatch.  Record the time of the fall between the two marked 
lines on the pipe in the first row of Table 2.  Be sure to view each event at eye level. 

4. Use the magnet to carefully pull the canister back to the top. 
5. Repeat steps 2-4 for the same sinker at least three more times and complete the first 

row of Table 1.  If an outlier occurs, identify it as such and repeat the measurement. 
6. Repeat Steps 2-5 for at least 3 more sinkers and record your results in Table 2. 
 
 
Table 2: Fall times for the “Sinkers” 
 

“Sinker” Mass 
(kg) 

Trial 1 
t1 (s) 

Trial 2 
t2 (s) 

Trial 3 
t3 (s) 

Trial 4 
t4 (s) 

Average  
tave (s) 

M1    
 

    

M2   
 

    

M3   
 

    

M4   
 

    

 
 
7. For a floater, be sure to keep the floaters right side up and remember to shake off any 

air bubbles attached to the canisters.  Carefully, drag the floater to the bottom of the 
pipe using the neodymium magnet. 

8. Release the canister.  When the bottom of the canister crosses the lower line, start the 
stopwatch. When that same part of the canister crosses the upper line, stop the 
stopwatch. 

9. Record the rise time between the two marked lines on the pipe in the first row of 
Table 3. 

10. Use the magnet to carefully pull the canister back to the bottom. 
11. Repeat steps 7-9 for the same floater at least three more times and complete the first 

row of Table 3.  If an outlier occurs, identify it as such and repeat the measurement. 
12. Repeat Steps 7-11 for at least 3 more floaters and record results in Table 3. 
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Table 3: Rise times for the “Floaters” 
“Floater” Mass 

(kg) 
Trial 1 
t1 (s) 

Trial 2 
t2 (s) 

Trial 3 
t3 (s) 

Trial 4 
t4 (s) 

Average  
tave (s) 

M1    
 

    

M2   
 

    

M3   
 

    

M4   
 

    

 
13. Refer back to Equation (4) and note the square of the terminal speed, vt2, is linear 

with the mass of the canister, M.  That is, vt2 = (slope)*M + (y-intercept). 
14. Using the distance of 1.50 m between the starting and stopping lines, calculate the 

average terminal speed, vt, and its square, vt2, for each sinker and floater.  Complete 
Table 4. 

 
Table 4: Terminal Speed 
Sinker Term. Speed 

vt (m/s) 
Term. Speed 

vt2 (m2/s2) 
Floater Term. Speed 

vt (m/s) 
Term. Speed 

vt2 (m2/s2) 

1  
  1   

2  
  2   

3  
  3   

4  
  4   

 
Question: Starting with Eqn. (4), solve for vt2 in terms of the other variables.  Be careful 
that you use the correct sign (+ or –) for the Cvt2 term in your calculation for the sinkers 
and the floaters.  In terms of variables, what are the magnitudes of the slopes for the 
sinker data and the floater data? 
 
 
 
 
 
 
Questions: In principle, the average drag coefficients for the sinkers and the floaters 
should be about the same.  Why?  If they were significantly different (>10%) to what do 
attribute the difference? 
 
 
 



10 

15. Using any available data analysis software, create separate plots of vt2 vs. M for the 
sinkers and for the floaters.  (The graphs should be fairly straight lines.)  

16. Using the fit routine of the analysis software, separately fit your sinker data and 
floater data to straight lines.  From the linear fit, record the slopes of both lines. 

17. Separately calculate the drag coefficients for the sinkers and for the floaters based on 
the slopes of the lines that you fitted with the analysis software.  Don’t forget the 
units! 

 
  Csink =      Cfloat =     
 
Checkpoint: Discuss the results of your vt2 vs. M graph and your drag coefficients with 
your in instructor before proceeding.   
        Instructor’s OK:    
 
18. Upon instruction approval, print the graphs with the slope values and include them 

with your lab packet.  Be sure to fully annotate each graph. 
            

 
Part II 

Determination of Hex Nut Mass 
 

In Part I, you exploited the linear relationship between the square of the terminal speed 
(vt2) and the total canister mass (M) to determine the effective drag coefficient (C) to 
account for the viscous drag on the canister due to the water.  The total mass of the canister 
is the mass of the empty canister plus the mass of an integer number of hex nuts.  That is,  
 

 , (5) 
 
where Mcan is the mass of the empty canister, mnut is the mass of a single hex nut, and N is 
an integer.  Since the total canister mass is linear with the hex nut mass (mnut), it must be 
true that vt2 also varies linearly with mnut. 
 
Just as you did in Part I, you will measure the terminal speed for the canisters that contain 
various numbers of hex nuts.  The only difference now is that we already know the drag 
coefficients for the sinker and floaters.  Since N can only take on integer values, repeated 
measurements of various canisters should result in vt2 data that tends to “clump” in groups 
in accordance to the number of hex nuts inside the canisters. 
 
After you measure the terminal velocities for the canisters, you will create a histogram (i.e., 
a frequency distribution of occurrences) for the square of the terminal speed, vt2 for both 
the sinkers and floaters.  Assuming careful measurements, the vt2 values data should indeed  
“luster in groups in accordance to the number of hex nuts inside the canisters.  By assigning 
integer values to the groups based on the values of vt2, you will eventually be able to plot 
the square of the terminal speed, vt2 vs. N for both the sinkers and the floaters that should 
be a straight line.  This may require some trial and error.  The slope of the sinker and 
floater lines will then used to determine “elementary mass” of the hex nut. 

M =Mcan + Nmnut
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Questions: Substitute the expression for the total mass of the canister from Eqn. (5) into 
for vt2 that you derived in Part I (below Table 4) to show that vt2 is linear with mnut.  That 
is, vt2 = (slope)*mnut + (y-intercept).  In terms of variables, what is the expression for the 
slope of this line? 
 
 
 
 
 
 
 
Checkpoint: Consult with your instructor before proceeding.  Instructor’s OK:    
            
 

Procedure 
 

1. Using the canisters specially marked for Part II, repeat the same procedure as you did 
in Part I except for the following differences: 

 
• You will have access to only one canister at a time.  After you acquire all the data for 

that canister, you will return it in exchange for another. 
• You will measure sinkers and floaters until you until you have at least five 

measurements of vt for the sinkers and five for the floaters. 
 
2. Complete Tables 5 and 6 for the average fall/rise times for the canisters just as you did 

in Part I. 
 
Table 5: Fall times for the “Sinkers” 
 

“Sinker”  Trial 1 
t1 (s) 

Trial 2 
t2 (s) 

Trial 3 
t3 (s) 

Trial 4 
t4 (s) 

Average  
tave (s) 

1  
 

    

2  
 

    

3  
 

    

4  
 

    

5  
 

    

 
 

     

 
Sinker Drag Coefficient, Csink = _______ (       ) (from Part I) 
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Table 5: Rise times for the “Floaters” 

“Floater”  Trial 1 
t1 (s) 

Trial 2 
t2 (s) 

Trial 3 
t3 (s) 

Trial 4 
t4 (s) 

Average  
tave (s) 

1  
 

    

2  
 

    

3  
 

    

4  
 

    

5  
 

    

 
 

     

 
Floater Drag Coefficient, Cfloat = _______ (       ) (from Part I) 
 
3. Complete Table 7 for the terminal speeds and the square of the terminal speeds for your 

sinkers and floaters. 
 
Table 7: Terminal Speed for Square of Terminal Speed 
 

Sinker vt (m/s) vt2 (m2/s2) Floater vt (m/s) vt2 (m2/s2)  
 

1  
  1    

2  
  2    

3  
  3    

4  
  4    

5  
  5    

 
Question: Based on your results, does it appear that each of your canisters had a different 
number of hex nuts or did any appear to have the same number as another?  What is the 
evidence for your answer? 
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4. Note the occurrences of vt2 for the sinkers and again for the floaters.  For each of the 
sinkers and floaters, assign N = 1 to the lowest “clump” of vt2.  Each “clump” should 
correspond to different numbers of hex nuts in the canisters. 

 
Question: Do there appear to be any “missing clumps” in the vt2 vs. N histograms?  If so, 
what do you suppose this means?  Even if you had no apparent gaps, what would such a 
gap imply? 
 
 
 
 
 
 
5. Using the data analysis software, create separate plots of vt2 vs. N for the sinkers and 

for the floaters.  (As before, the graphs should be fairly straight lines.)  
6. Using the fit routine of the analysis software, separately fit your sinker data and 

floater data to straight lines.  From the linear fit, record the slopes of both lines. 
 
Checkpoint: Discuss the results of your vt2 vs. N graphs with your in instructor before 
proceeding.   
        Instructor’s OK:    
 
7. Upon instruction approval, print the graphs with the slope values and include them 

with your lab packet.  Be sure to fully annotate each graph. 
8. Separately calculate the hex nut mass for the sinkers and for the floaters based on the 

slopes of the vt2 vs. N lines that you fitted with the analysis software.  Don’t forget the 
units! 

 
 Sinker: mnut =       Floater: mfloat =    
            

 
In the homework, you will assess how well you did. First you will measure the actual mass 
of the hex nuts and volume of a canister.  Measure total mass of ten hex nuts, and 
determine the average mass of a single hex nut. 
 
 Actual mass of hex nut =    
 
Measure the volume of a canister by measuring the reading of a graduated cylinder before 
and after a sinker is submerged in a graduated cylinder.  (Be sure that the canister is fully 
submerged after placed in the cylinder.) 
 
 Actual volume of canister =    
 
Checkout: Consult with your instructor before exiting the lab.  Instructor’s OK:   
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A MECHANICAL ANALOGY TO 
THE MILLIKAN OIL DROP EXPERIMENT 

 
Homework 

 
Be sure to show all calculation and/or reasoning!  Credit will not be given for answers that 
are not supported with valid explanation and/or work provided. 

 
1. The electric charge on a particular object is found to be +1.00 nC.  Have electrons been 

added or have electron been taken away from the object?  How do you know? 
 
 
 
 
 
 
2. Based on the accepted value for the magnitude of elementary charge for an electron, 

how many electrons have been added or taken away from the object described in the 
previous question.  

 
 
 
 
 
 
3. Using your graphs from Part I, experimentally determine the point at which the sinker 

line and floater line intersect.  Theoretically, what should the value of terminal speed be 
at this point?  Conceptually, what is the significance of this point? 

 
 
 
 
 
 
4. From the true mass a mass of a single hex nut, calculate a percent error separately for 

your sinkers and for your floaters.  How well would you say your group did in 
measurement the “elementary mass” of the hex nut for each group? 

 
 
 
 
 
 
5. Consider (separately) the slopes of your graphs for your sinkers and floaters in Part II.  

Based on the actual mass of the hex nut, were your slopes too high or too low?  How do 
you know?  What might have been the cause(s) of this? 
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